数学
高校生

この問題の解き方を教えてください
(2)の【4】がよく分からないです
あとこの場合分けの考え方も教えてください

三角方程式の解の個数 重要 例題 126 aは定数とする。 0≦0 <2πのとき, 方程式 sin' - sin0 = a について 150g (1) この方程式が解をもつためのαのとりうる値の範囲を求めよ。 (2) この方程式の解の個数をαの値によって場合分けして求めよ。 CHART & SOLUTION 方程式f(0)=a の解 2つのグラフy=f(0),y=a の共有点 sin0=k(0≦0<2π)の解の個数 k=±1 で場合分け 期間① の個数はk=±1 のとき1個; −1 <k<1のとき2個;k<-1,1<k のとき0個 150 解答 (1) sin²0-sin0=a sin0=t とおくと ② ただし、0≦0 <2π から 01≦t≦1...... ③ したがって, 方程式 ① が解をもつための条件は, 方程式 ②③ の範囲の解をもつことである。 1-aduh TOL200 250 x>020 (1) £0) ①とする。 t²-t=a 0 方程式②の実数解は、y=-1=(1-212)-1/24 [2]+ の [3] グラフと直線y=α の共有点のt座標であるから, [4]- [5] 右の図より -sas2 a≤2 seas ttt0=p1200mia ⑩ (2) (1) の2つの関数のグラフの共有点のt座標に注目すると 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t = -1 から 1個 [2] 0<a<2のとき, -1<< 0 から 2個 [4] ~ [3] α=0 のとき, t = 0, 1 から 3個 [4] [4] -1/ <a<0のとき,0<t</12/12/3 [1]- 1/12/2<1 <t<1 a <1/12 <a のとき a<-₁ [2] 2 の範囲に共有点がそれぞれ1個ずつあり,そ [1] れぞれ2個ずつの解をもつから 4個 [5] a=-21 のとき, t=1/12 から 2個 [6] 10個 10 -1 基本125 YA) 2 1 021 π y=a *** aor aor 2πi 0 t=sin 0 205 -[3] -[5] - [3] 4€ 16

回答

まだ回答がありません。

疑問は解決しましたか?