学年

教科

質問の種類

数学 高校生

数IIの二項定理に関する問題で質問です 赤い線の部分が全く理解出来ていません。わかりやすく説明していただけると嬉しいです🙏🏻🙏🏻

21 」の考えを利用して証 5 (1) の数を,次の2通り nCkxk )。 ■Xn-1 Ck-1 通り える。 2通りがある 解答 ば、n個の要素 一選ぶと考える。 重要 例題 6 n桁の数の決定と二項定理 (1) 次の数の下位5桁を求めよ。 (ア) 101100 (イ) 99100 (2)2951900で割ったときの余りを求めよ。 [類 お茶の水大] 基本1 (1)これをまともに計算することは手計算ではほとんど不可能であり,また,それ を要求されてもいない。 そこで,次のように 二項定理を利用すると,必要とされ る下位5桁を求めることができる。 (ア) 101100=(1+100)100= (1+102 ) 100 これを二項定理により展開し、各項に含ま れる 10^(nは自然数) に着目して、下位5桁に関係のある範囲を調べる。 (イ) 99:00=(-1+100)100= (-1+102) 100 として, (1) と同様に考える。 (2)(割られる数)=(割る数)×(商)+(余り)であるから, 2951 を900で割ったと きのを M, 余りを とすると, 等式 2951= 900M+r (M は整数,0≦x<900)が成 り立つ。295=30-1)51であるから,二項定理を利用して (30-1)を900M+r の形に変形すればよい。 (1) (ア) 101100(1+100)'OO=(1+102) 100 =1+100C1×102+100C2×10^+10°×N =1+10000+495×105 + 10°×NEY (Nは自然数 この計算結果の下位5桁は,第3項 第4項を除いて も変わらない。 よって, 下位5桁は 10001 展開式の第4項以下をま とめて表した。 10"×N (N, n は自然数, n≧5) の項は下位5桁の 計算では影響がない。 1 章 3次式の展開と因数分解、二項定理 00100-( 1100)100_(_1+102) 100

解決済み 回答数: 1
数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 高校生

最後のXからxとかの変換についてなんですけど、どうやってるのか分からないです。

207 重要 例題 130点(x+y, xy) の動く領域 実数x,yx2+y2 ≦1 を満たしながら変わるとき, 点(x+y, xy) の動く領域 を図示せよ。 指針 ①条件式x2+y2≦1 を X, Yで表す。 x+y=X, xy=Yとおいて,X,Yの関係式を導けばよい。 x2+y²=(x+y)^2xy を使うと X2-2Y ≦1 しかし, これだけでは誤り! 2 重要 129 x, y が実数として保証されるような X, Yの条件を求める。 → x,yは2次方程式(x+y)t+xy=0 すなわち f-Xt+Y=0 の2つの解で あるから,その実数条件として 判別式 D=X2-40 実数条件に注意 解答 X=x+y, Y=xy とおく。 x2+y2≦1から (x+y)²-2xy≦1 すなわち X2-2Y≦1 X2 したがって Y≥ ① 2 2 また,x, yは2次方程式2-(x+y)t+xy=0 すなわち 3章 1 不等式の表す ると ここで よって, X2-4Y0 から t-Xt+Y=0の2つの実数解であるから, 判別式をDとす D≧0 D=(-X)-4・1・Y=X2-4Y 2数 α β に対して p=a+β,g=αβ とすると, a, βを 解とする2次方程 式の1つは x²-px+q=0 X2 Y≤ ...... ② yA x21 4 y2 2 X2 ①②から 2 y= 変数を x, y におき換えて 14 x21 2 2 12 1 2 -√2 したがって、 求める領域は、 右の図の 斜線部分。ただし、 境界線を含む。 12 0. x² 1 x2 とす 2 2 4 るとx=±√2 昌樹 実数条件(上の指針の②)が必要な理由 検討 x+y=X, xy=Yが実数であったとしても, それが x2+y2≦1 を満たす虚数x,yに対応し + 12-12 のときx+y=1(実 た X,Yの値という可能性がある。例えばx=1/12/1/22y=1/12/21/2の 数), xy=1/12 (実数)で,x+y's1 を満たすがx,yは虚数である。このような(x,y) を 除外するために 実数条件を考えているのである。

解決済み 回答数: 1
数学 高校生

なぜマイナスをつけていないのでしょうか?教えてください。−(xの2乗+2x−a+2)=0の判別式DについてD>0にしてやってはいけない理由を教えてください。お願いします。

基本 例題 95 関数が極値をもつための条件 0000 a 2 は定数とする。 関数f(x)= x+1 x2+2x+a について,次の条件を満たすαの値ま たは範囲をそれぞれ求めよ。 (1) f(x) がx=1で極値をとる。 (2) f(x) 極値をもつ。 /p.162 基本事項 2 基本 94 重要 96 指針 f(x) は微分可能であるから f(x) が極値をもつ⇔ [[1] f (x)=0となる実数αが存在する。 [[2] x=αの前後でf'(x) の符号が変わる。 まず必要条件 [1] を求め, それが十分条 件 [2] も満たす) かどうかを調べる。 f'(x) f'(x)=0 0=(2 f'(x) f'(x)\ 極 f'(x) <0 <0 >0 小 f'(x) = 0 (1) f(1) = 0 を満たすαの値 (必要条件) を求めてf(x)に代入し, x=1の前後で f(x) の符号が変わる (十分条件) ことを調べる。き TRAHD (2) f'(x)=0が実数解をもつためのαの条件(必要条件) を求め、その条件のもとで, f'(x) の符号が変わる (十分条件)ことを調べる。 なお,極値をとるxの値が分母を0としないことを確認すること。 4 章 1 内 AR 90 f'(x)= 定義域は,x2+2x+α≠0 を満たすxの値である。f(x)の分母)≠0 1(x2+2x+a)(x+1)(2x+2) 2+2x-a+2 u'v-uv (x2+2x+α)2 x2+2x+α) 2 v2 (1) f(x) は x=1で微分可能であり、 x=1で極値をとる とき f'(1) = 0 第1 必要条件。 (分子)=1+2-a+2=0, (分母)=(1+2+α)20( よって α=5 このときf'(x)=(x+3)(x-1) <a=5は の解。 (x2+2x+5)2 ゆえに、f'(x) の符号はx=1の前後で正から負に変わ十分条件であることを示 り, f(x) は極大値 f(1) をとる。 したがってd=5 0x (2)f(x)が極値をもつとき, f'(x)=0となるxの値が(この確認を忘れずに!) あり, x=cの前後でf (x) の符号が変わる。(x) よって, 2次方程式x2+2x-a+2=0の判別式Dにつ て D0 すなわち 12-1 (-α+2)>0 これを解いて a>1 このとき,f'(x)の分母について {(x+1)'+α-1}^≠0 であり、f'(x)の符号はx=cの前後で変わるからf(x) は極値をもつ。 したがって a>1 x=c(C1とC2の2つ)の前 後でf'(x) の符号が変わる。 =x+2x-a+2 x + + C1 C2 x

解決済み 回答数: 1