学年

教科

質問の種類

数学 高校生

左の写真の黄色チャートの問題ではKと aの値が出てからさらに場合分けをしているのに、右写真のフォーステでは場合分けをしていないのはなぜですか?

73 重要 例題 43 虚数を係数とする 2次方程式 00000 xの方程式(1+i)x2+(k+i)x+3+3ki=0 が実数解をもつように,実数k の値を定めよ。また,その実数解を求めよ。 CHART & SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る (C) 基本 38 2章 DOから求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1 + i)a2+(k+i)a+3+3ki=0 この左辺をa+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0,b=0α, kの連立方程式が得られる。 6 2次方程式の解と判別式 解答 (-8) S 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i = 0 α, kは実数であるから, a2+kα+3,a2+α+3kも実数 ①よって大] a2+ka+3=0 ...... ① a2+α+3k=0 ② ①-② から ゆえに (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって k=1 a=3&c 0=(-a)+x(E- [1] k=1 のとき ① ② はともに α+α+3=0 となる。 これを満たす実数αは存在しないから, 不適。 [2] α=3 のとき ①,②はともに 12+3k=0 となる。 ( x=α を代入する。 a+bi=0 の形に整理。 この断り書きは重要。 素数の相等。 α 2 を消去。 消去すると α-2α²-9=0 が得られ, 因数定理 (p.87 基本事項 2 ) を利用すれば解くことがで きる。 ←D=1°-4・1・3=-11 < 0 | 1:32+3k+3=0 ②:32+3+3k=0 ゆえに k=-4 [1], [2] から 求めるkの値は k=-4 実数解は x=3

解決済み 回答数: 1
数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題 218 4次関数が極大値をもたない条件 00000 関数f(x)=x4-8x3+18kx2 が極大値をもたないとき, 定数kの値の範囲を求め よ。 XAS 4次関数 f(x) x=pで極大値をもつ [福島大] 基本 211,214 x Þ f'(x) + 0 f(x) 極大 \ x=pの前後で3次関数f(x)の符号が正から負に変わる であるから、f'(x)の符号が「正から負に変わらない」条件を 考える。 3次関数f(x) のグラフとx軸の上下関係をイメー ジするとよい。 なお、解答の右横の図はy=x(x2-6x+9k) のグラフである。 f'(x)=4x-24x2+36kx=4x(x2-6x+9k) f(x) が極大値をもたないための条件は, f'(x) = 0 の実数 解の前後でf'(x) の符号が正から負に変わらないことであ ある。このことは, f'(x)のx3の係数は正であるから, 3次 方程式 f(x) = 0 が異なる3つの実数解をもたないことと 同じである。 k≥1 y k>1 k=1 347 3 x 解答 f'(x) = 0 とすると x=0 または x2-6x+9k=0 よって, 求める条件は,x2-6x+9k=0が k=0 y [1] 重解または虚数解をもつ [2] x=0 を解にもつ [1] x2-6x+9k=0 の判別式をDとすると D≤0 1-k≤0 35 12121=(-3)2-9k=9 (1-k) であるから 求め方は よって k≧1 [2] x2-6x+9k=0に x=0を代入すると k=0 したがって k=0, k≧1 おける関数の 6 x I 一般に, 4次関数 f(x) [4次の係数は正] に対し、f'(x)=0 参考 [4次関数の極値とグラフ] 3次方程式で,少なくとも1つの実数解をもつ。 その実数解をαとし、他の2つの解が実数 あればβ, y とする。このとき, y=f(x) のグラフは、次のように分類できる。 特に, 極大値を るのは①の場合だけである。 あり ける 小が入れ替わる)

未解決 回答数: 0
数学 高校生

整数問題について 題意は互いに素を利用するとの事ですが、 自力で解いたやり方ではm.lを用いて条件から立式し、n+9を無理やり変形して24(m+l)という形で証明しました。 私の証明方法も正しいですか?

基本 (1) n 例題 120 互いに素に関する証明問題(1) 00000 は自然数とする。 n+3は6の倍数であり,n+1は8の倍数であるとき, n+9は24の倍数であることを証明せよ。 (2)任意の自然数nに対して、連続する2つの自然数nn+1は互いに素で あることを証明せよ。 針 /p.525 基本事項 2 重要 122 (1)を用いて証明しようとしても見通しが立たない。 例題 110 のように,n+1, n+9 がそれぞれ8, 24の倍数であることを、別々の文字を用いて表し, n を消去す る。そして, nの代わりに用いた文字に関する条件を考える。 次のことを利用。 a, 6は互いに素で, akが6の倍数であるならば, kはの倍数である。......★ (2)nn+1は互いに素⇔nとn+1の最大公約数は nとn+1の最大公約数をg とすると (a, b, は整数) n=ga, n+1=gb (a,bは互いに素) この2つの式からnを消去してg=1 を導き出す。 ポイントは A,Bが自然数のとき, AB=1 ならば A=B=1 CHART 11 ak=blならばんはの倍数 7αの倍数 a,bは 互いに素 2 αと6の最大公約数は1 (1) n+3=6k. n+1=81(k, lは自然数) と表される。 参考 (1) n+9は,6 答 n+9=(n+3)+6=6k+6=6(k+1) n+9=(n+1)+8=8l+8=8(+1) よって 6(k+1)=8(1+1) すなわち 3(k+1)=4(+1) 3と4は互いに素であるから, k+1は4の倍数である。 したがって, k+1=4m (mは自然数) と表される。 したがって,n+9は24の倍数である。 ゆえに n+9=6(k+1)=6.4m=24m 数かつ8の倍数である ら,6と8の最小公倍 である24の倍数と て示してもよい。 <指針 ★ の方 なお、「3と4は互い 素」は重要で,この がないと使えない。 では必ず書くように

解決済み 回答数: 2
数学 高校生

(2)がわかりません 解説お願いします🙇‍♀️

362 重要 例 19 塗り分けの問題 (2) 立方体の各面に、隣り合った面の色は異なるように,色を 方体を回転させて一致する塗り方は同じとみなす。 (1) 異なる6色をすべて使って塗る方法は何通りあるか。 (2) 異なる5色をすべて使って塗る方法は何通りあるか。 ただし、立 基本 17 重要 31 指針 「回転させて一致するものは同じ」と考えるときは, (1) 1色で固定 展開図 (上面を除く) 特定のものを固定して、他のものの配列を考える (1) 上面に1つの色を固定し, 残り 5面の塗り方 を考える。 まず下面に塗る色を決めると, 側面 の塗り方は円順列を利用して求められる。 (2) 5色の場合、同じ色の面が2つある。 その色で 上面と下面を塗る。 そして, 側面の塗り方を考 えるが,上面と下面は同色であるから,下の解答 のようにじゅず順列を利用することになる。 下面 異なる色 側面は円順列 (2) 同色で固定 CHART 回転体の面の塗り分け 1つの面を固定し円順列 かじゅず順列 (1)ある面を1つの色で塗り,それを上面に固定 検討 解答 する。 このとき、下面の色は残りの色で塗るから 5通り そのおのおのについて, 側面の塗り方は、異なる 4個の円順列で よって (4-1)!=3!=6(通り)人と干 5×6=30 (通り) るから (1) 次の2つの塗り方は,例え 左の塗り方の上下をひっくり すと, 右の塗り方と一致する このような一致を防ぐため、 面に1色を固定している。 5 6 (E)ASE-1 () (2)2つの面は同じ色を塗ることになり,その色の 選び方は 通り その色で上面と下面を塗ると,そのおのおのに ついて, 側面の塗り方には,上下をひっくり返す と,塗り方が一致する場合が含まれている。 (*) ゆえに、異なる4個のじゅず順列で って (4-1)!=3=3(通り) 2 2 5×3=15 (通り) に関し,例えば, つの塗り方(側面の色の が、時計回り、反時計回 いのみで同じもの) は、 ひっくり返すと一致する

解決済み 回答数: 1
数学 高校生

この問題がわかりません 解説お願いします🙇‍♀️

重要 例題15 完全順列 (k番目の数がんでない順列) 5人に招待状を送るため、あて名を書いた招待状 0000 を入れるあてる あるか。 た封筒を作成した。招待状を全部間違った封筒に入れる方法は何通りある 何通りあ 〔武庫川女子大〕 指針 5人を 1, 2, 3, 4, 5 とし それぞれの人のあて名を書いた封筒を1, 2, 3, ④ F 招待状を1, 2, 3, 4, 5 とすると, 問題の条件は k ≠ (k=1,2,3,4, よって, 1,2,3,4,5の5人を1列に並べたとき, k番目がんでない順列の数を ればよい。 5人を1,2,3,4,5 とすると, 求める場合の数は,5人を 解答 1列に並べた順列のうち, 番目が (k=1,2,3,4,5) でないものの個数に等しい。 m ta 1番目が2のとき, 条件を満たす順列は,次の11通り。 1番目は1でない。 pac1-5-4 4-5-3 2-1< 2-3 4-5-1 参考 樹形図を作る 5-3-4 5-1-4 例えば 1-5-3 A 1-3-4 2-44 1-3 2-54 ~5< 1-3 2-1< 4 5-3- 3-1 3-1 1番目が 3,4,5のときも条件を満たす順列は,同様に 11 のように書き, 内 通りずつある。 よって, 求める方法の数は 11×4=44 (通り) 完全順列 (次ページの参考事項も参照) の下にその数字を並 ようにするとよい。 do 1~nのn個の数字を1列に並べた順列のうち、どの番目の数字もんでないもの 寸 全順列という。 完全順列の総数を調べるには,上の解答のように樹形図をかいても しかし, nの値が大きくなると, 樹形図をかくのは大変。 そこで, n≧4のときの完全 については,1つ前や2つ前の結果を利用して調べてみよう。 n個の数字の順列 1, 2, n=1のとき W (1) = 0 の完全順列の総数を W (n) で表す。 od n=2のとき, ②①の1通りしかないから W (2)=1 n=3のとき, 31, 3 1 2 の2通りあるから n=4のとき,まず, 1, 2, 3の3個の数字の順列の W(3)=2

解決済み 回答数: 1