学年

教科

質問の種類

数学 高校生

2番です。解説ではa=0のとき全ての実数と書いていますが、虚数も含んでいいのでは?と感じたのですがなぜ実数だけなのですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

解決済み 回答数: 1
数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0
数学 高校生

(1)です 頂点が(2.-3)なのでy=3分の1(x-2)²-3はダメなんですか?

126 第2章2次関数 Think 例題 58 軸から切りとる線分の長さ 次の問いに答えよ. (1) x軸から切りとる線分の長さが6で, 頂点が点 (2, -3) である放物 線をグラフとする2次関数を求めよ. (2) 放物線y=2x2+2x-3とx軸との共有点をA,Bとするとき,線 分ABの長さを求めよ. (3) 放物線y=-x2+x+α-3がx軸から切りとる線分の長さが3で あるとき,定数aの値を求めよ. 考え方 放物線がx軸から切りとる線分とは,右の図のような線分 である. |解答 放物線とx軸との交点 放物線は軸について対称 などの性質から条件を見つけていく. 0-8-1843 (1) 与えられた条件を図にすると、右のようになり,x軸との共 有点がわかる.x軸との共有点→因数分解形で考える. (放 物線は軸に関して対称である。) の (60X36) SAX - (2) 求める線分ABの長さは, 2次関数のグラフがx軸から切 $30 - 3=α(2-5)(2+1) より よって、求める2次関数は, x=2+3=5 と x=2-3=-1 **** よって, グラフは2点 (5,0),(-1, 0) を通るから, 求める2次関数は,y=a(x-5)(x+1)とおける. 点 (2,-3)を通るから, a= ***** 1 3 放物線がx軸から 切りとる線分 る線分の長さのことである。B-a つまり、グラフとx軸との共有点のx座標をα, B(a <B) とすると,求める線分の長さはβ-αとなる. 与えられた2次関数を「=0」 とおいて求めた解がx軸との 共有点のx座標となる. D (1) 軸は直線x=2で, グラフはx軸から長さ6の線分 を切りとるから,x軸との交点のx座標点のx座標をα, PATARIM: む公式 (2,-3) 12 -313 a -6 5 x P X グラフとx軸の交点 Br すると、切りとる 分の長さは, | B-α|となる. x軸との共有点 y=a(x-a)(x-B) =(x-5)(x+1)(因数分解形) 練習 5 * 58

解決済み 回答数: 1
数学 高校生

この問題でなぜ相乗平均相加平均を使うという思考になるんですか? 教えて欲しいです

328 重要 例題 220 面積の最大・最小 (2) aを正の実数とし,点A(0. CHART ・P.328,329 OLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 ② 上下関係を調べる Sla)は、区間 OSxs1 において直線APとの間の部分の面積である。 ず 2点A, なお,本間の S (α) はαの分数式で表される (分数関数) が 積が定数となる正の数の和→(相加平均) (相乗平均) を利用。 X:0 直線 AP の方程式はy- (a+/2/27)= すなわち よって、 右の図から 1 s(a)= Sill 2a -=[ -= -1/² x 等号が成り立つのは よって, るが, α> 0 から √√6 4 a=- - a -X x-(a +22)_ ª~(ª + 2a) 1-0 1 at. -x+a+· 4a a>0 であるから 相加平均と相乗平均の大小関係により s(a)= 3a + 1 = 2√/3a+1=2√ √ √5 ≧2. a% 2. 4a 2 a= すなわち d= 4a 8 0000 1212) と曲線C:y=ax およびC上の点 1 y=-2x+a+24 a=- √6 4 14)-ax²|dxx 2a 1 ² + ( a + ₂a)x] = = = a + + 2 2a 4a で最小値- のときである。 √6 3 をとる。 のときであ 1 2a a+. O S(a) 例題221 2つ つの放物線をC:y= と の両方に接 (2) と C2 おこ y=ar CHART O 別解Q(10) すると S(α) = (台形OAPQ) --Sax²dx 4a COLUT 曲線と接線yz 2つの放物線 な方針が考えら のx座標が必要 (2) 被積分関数 == // {a+(a + 2 }}-1\ -[1 a =a + 1/2-1/ 4a 3 =1/30 (1)y=(x-1)2 から よって, C上の点 y-(a-1)2=2(c y=x²-6x+5か よって, C2 上の y-(6²-6b+5 直線 ①, ② が一 2(a-1)=26 ③から よって b= ① から、求め (2) PRACTICE・・・・ 220④ 放物線 C:y=x2 上の点P(α, α²) における接線をl とする。 ただし, a>0とする。 (1) 点Pと異なるC上の点Qにおける接線l2 が と直交するとき,l2の方程式を求 めよ。 218 a= (2) 接線 l1,l2 および放物線Cで囲まれた部分の面積をS(α) とするとき, S(α)の 小値とそのときのαの値を求めよ。 [類 立命館大】 とC2の であるから ゆえに、求 s=S₁10 + (2) 11 PRACTI

解決済み 回答数: 1
数学 高校生

この問題でS[A]を求めるのに解説のやり方を見たのですが,三つの式が成り立つのに,なぜ二つの式だけを使って面積を表すことができるのかわからないです 2枚目のような問題しか解いたことがなかったのでこのような式の表し方が初めてでこのグラフの面積の時はこのような式にする と覚え... 続きを読む

328 重要 例題 220 面積の最大・最小 (2) aを正の実数とし,点A(0, CHAI P (1, α) を考える。 曲線Cとy軸, および線分 AP 546) &&28, 5(4) HEROESOMERO CHART 解答 OLUTION 面積の計算 まずグラフをかく ① 積分区間の決定 ② 上下関係を調べる S(a)は,区間 0≦x≦1において直線AP と曲線の間の部分の面積である。 ず 2点A, Pの座標から直線AP なお,本間のS(α) はαの分数式で表される (分数関数) が 積が定数となる正の数の和 S(a)= y-(a+; 1 2a at y=- 00000 12/12) と曲線C:y=ax2 およびC上の点 18 √√√6 4 るが, a>0 から a=y 2a 直線AP の方程式は すなわち よって、 右の図から -SH(- -ax² dx -x+a+ 2a 2 - [ - 3 x ² - 1 2 x ² + ( a + ₂ a) x ] = = = a + 1/ =- 4a 2a, 4a AP で囲まれる部分の面積を a- (a + 2a) x 1 1-0 =x+a+ ・ (相加平均) (相乗平均) を利用。 ・・・・ X20 1 2a a>0 であるから,相加平均と相乗平均の大小関係により s(a)= ²3a + 12 ²2 √/²3/a-1 = 2√/ == 3 2 1 √6 -≥2, =2, 4a 6 & 等号が成り立つのは 12/24 12/30 1/10 すなわちd=2123 のときであ 4a 8 のときである。 6 よって,a=2で最小値- をとる。 3 基本30,210 Face- +12/11 ata S(a) 重要 例題 つの放物 (1) C₁ ( (2) 放物線 =a+ -a+ y=arl CHART 別解 Q(10) すると S(α) = (台形OAPQ) -Sax²dx ==—= (a + ( a + 2 )|-¹1 1 a 4a 3 Q 1 4a 曲線 (1) 2 な方針 のx座 (2) 被積 解答 (1)y=(x-1) 2 よって, Ci上 y-(a-1)²- y=x2-6x+5 よって, C2 上 y- (62-66- 直線 ①, ② - 2(a-1)=26 ③から a= よって b=2 ① から、求め (2) C₁ C₂ 0 であるから ゆえに、求め s=Si PRACTICE・・・ 220④ 放物線C:y=x2 上の点P(α, d2) における接線をl とする。 ただし, a>0とする。 (1) 点Pと異なるC上の点Qにおける接線l2 が l と直交するとき,l2の方程式を求 めよ。 (2) 接線 l1,l2 および放物線Cで囲まれた部分の面 Date とき S (a) の最 +C PRACTICI

解決済み 回答数: 1