学年

質問の種類

数学 高校生

次の写真でcについて積分定数と言わなくてだ大丈夫なのでしょうか?どなたか解説お願いします🙇‍♂️

例題 235 不定積分〔2〕...∫(ax+b)" dx 次の不定積分を求めよ。 (1) ∫(2x+1)dx 思考のプロセス (2)f(x+1)(x+2)dx (2x+1)(x+1)(x+2) を展開してもよいが, 項が多くなり大変。 |公式の利用 次の公式を用いると, 計算量が少なくなる。 Sax+b)"dx= (1次式)* 1 1 an+1 (ax+b)"+1+C x+1に注目して, (x+1)* をつくる。 (x+1)(x+2) = (x+1)^{(x+1)+1}=(x+1)+(x+1)2 Action》(ax +b)" の積分は, 1 a n+1 -(ax +b)"+1 + C とせよ (2x+1)dx= 1/12 1/2(2x+1)'+C= 1/2(2x+1)^+C 1 (1) ∫(2x 〔別解) (2x+1)dx = (8x3+12x +6x+1)dx ∫(8x + = 2x4+4x°+3x + x + C (2) f (x+1)(x+2)dx = f (x+1)^{(x+1)+1}dx 〔別解) f(x+1) =∫{(x+1)+(x+1)*}dx 1/2(x+1)+1/2 (x+1)^+ 1/2(x+1)+C (x+1)²(x+2)dx = √(x²+2x+1)(x+2)dx = f (x+4x²+5x+2)dx ◆ Point 参照 √(ax+b)" dx 1 1 -(ax + by +1 + C a n+1 例題234のように展開し てから考えてもよい。 (x+1)(x+2) = (x+1)^{(x+1)+1} = = (x+1)+(x + 1) と変形して, 公式を利用 する。 1 4 5 = x4+ + x2+2x+C 4 3 2 Point (ax +b)"の不定積分 nが自然数のとき, {(ax +b)"+1} = a(n+1)(ax+b)" が成り立つから f(ax+b)"dx = 1 1 (ax +b)"+1+C (a = 0) a n+1 この公式は ( 内がxの1次式の場合にのみ利用できる。 ( 内が2次以上 の式の場合は展開してから積分する。

解決済み 回答数: 2
数学 高校生

数学IIBCの問題です。 1枚目が問題で、2,3枚目が解説です。 赤のマーカーで囲っている問題が解説を読んでも全く分かりません。 2,3枚目の、赤のマーカーで引いている所が該当部分の解説です。 どなたか解説よろしくお願いします🙇🏻‍♀️

4 B 第2問 (必答問題) (配点 15 ) logsa'sxt=10gax+210ga Xog 第3回 5 1 x+2A M a 109230 10 1093 10g(1oglogsax) =(log33 - (og, α) また, x≧1 のとき, Xのとり得る値の範囲は X ≧ ウ である。 10g logia-2 であるすべてのxについて, つねに不等式① が成り立つようなαの値の範 囲を求めよう。 次の問題について考えよう。 f(x)=x2+ 2 AX - A + イ2 問題 α を正の定数とする。 不等式 (log3x)(log3a²x) ≥ log 9 とおくとき,f(X) の最小値をAを用いて表せば ① A<エの オー - A + 2 が x≧1であるすべてのxについて成り立つようなαの値の範囲を求め 方針 10g3x=X, 10g3a = A とおき, ① を X, A を用いて書き直す。 x≧1 のときのXのとり得る値の範囲を考慮する。 10gx = X, 10g3a = A とおくと (logsx) (10gsax)=x(ア2A+X) 10g 9 -=A- イス と変形できるので,不等式① は X, A を用いて A≧ I のとき 手 A + ク である。 これより, x≧1 であるすべてのxについて, つねに不等式① が成り立つ ようなαの値の範囲は ケ ≤as コ (数学ⅡI, 数学B, 数学C 第2問は次ページに続く。) である。 f(x)=(x+A)-A-A+2 (-A-1-A12) +2 log.0 <0 aɛz - (log, 0) — log, α-> X2+ ア AX-A + イ MO と変形できる。

解決済み 回答数: 1
1/25