学年

教科

質問の種類

数学 高校生

赤下線部に引いたところに質問です。 なぜCH垂直ABのような書き方になるのでしょうか。 CK垂直ABで解いてはいけないのですか?

356 第9章 平面上のベクトル △ABCにおいて, AB=5, AC=4, ∠A=60° とする. 頂点Cから辺ABに下ろした垂線」 の足をK, 頂点Bから辺ACに下ろした垂線の足を L, 線分CKとBL の交点をHとする とき, AH を AB=b, AC =c を用いて表せ. AKC T, *), AK=AB=²6 直角三角形 ABL で, 5 AL=2AC= 4 5/(1-s) + 8 s AK AC cos 60°=4• £1, 3点B,H, Lは一直線上にあるから、 BHHL=s: (1-s) とおくと, AH=(1-s)AB+SAL =(1-s)6+sc 5→ AL AB cos 60°=5.- = (1-s). 5. (²6) + sc 2 5 5 =(1-8)AK+SAC ここで,点Hは線分 CK 上にあるから, 5→ -s=1 h, MO K), 1→ £₂7, __AĦ==6+ 2 したがって BH⊥AC より, AB=5, AC=4, ZA=60° 0, |6|=|AB|=5, ||=|AC|=4, 6.c=16||c|cos 60° 5.4=10 =(sb+tc-c).6 =s/b1²+tb.c-b.c =s.5²+t-10-10 =25s+10t-10=0 5s+2t=21 BH AC=0 BH AC=(AH-AB). AC S =(sb+tc-b).c =sb.c+t|c²-b.c =s.10+t.4²-10 =10s+16t-10=0 したがって, ① ② より, よって, AH = 1/26+220 S= 1/2=2 5s+8t=52 2 t= 5 2 28 HA 4 1 06 01 B CINHA sc010-AS HORAIR - MAHO 40 SONA 20000 -50-20+50+ HD- 50+80+70- *AH=sb+tc .es 6-1 6-805-207-1840 CH⊥AB より, CH AB=0 CH AB=(AH-AC) AB 5 K → H Mos-0019 0 0103045/ C MO Check 練習 575 Step Up 章末問題 Q-C AP) 2 A(a), B(6) を通る直線AB上にあるとき, p=sa+tb, s+t=1 HO-20-AH AH=s+tc とおき、 CH⊥AB, BH⊥AC より, CH AB=0, BHAĆ=0& 利用して s, tの値を求める. 80HA 4-8-80-80-HA 040 05: HAS+70-5A+A6-50 9 ✔ AL 2 Tel² € SE f f

回答募集中 回答数: 0
数学 高校生

赤下線部に引いたところに質問です。 なぜCH垂直ABのような書き方になるのでしょうか。 CK垂直ABで解いてはいけないのですか?

356 第9章 平面上のベクトル △ABCにおいて, AB=5, AC=4, ∠A=60° とする. 頂点Cから辺ABに下ろした垂線」 の足をK, 頂点Bから辺ACに下ろした垂線の足を L, 線分CKとBL の交点をHとする とき, AH を AB=b, AC =c を用いて表せ. AKC T, *), AK=AB=²6 直角三角形 ABL で, 5 AL=2AC= 4 5/(1-s) + 8 s AK AC cos 60°=4• £1, 3点B,H, Lは一直線上にあるから、 BHHL=s: (1-s) とおくと, AH=(1-s)AB+SAL =(1-s)6+sc 5→ AL AB cos 60°=5.- = (1-s). 5. (²6) + sc 2 5 5 =(1-8)AK+SAC ここで,点Hは線分 CK 上にあるから, 5→ -s=1 h, MO K), 1→ £₂7, __AĦ==6+ 2 したがって BH⊥AC より, AB=5, AC=4, ZA=60° 0, |6|=|AB|=5, ||=|AC|=4, 6.c=16||c|cos 60° 5.4=10 =(sb+tc-c).6 =s/b1²+tb.c-b.c =s.5²+t-10-10 =25s+10t-10=0 5s+2t=21 BH AC=0 BH AC=(AH-AB). AC S =(sb+tc-b).c =sb.c+t|c²-b.c =s.10+t.4²-10 =10s+16t-10=0 したがって, ① ② より, よって, AH = 1/26+220 S= 1/2=2 5s+8t=52 2 t= 5 2 28 HA 4 1 06 01 B CINHA sc010-AS HORAIR - MAHO 40 SONA 20000 -50-20+50+ HD- 50+80+70- *AH=sb+tc .es 6-1 6-805-207-1840 CH⊥AB より, CH AB=0 CH AB=(AH-AC) AB 5 K → H Mos-0019 0 0103045/ C MO Check 練習 575 Step Up 章末問題 Q-C AP) 2 A(a), B(6) を通る直線AB上にあるとき, p=sa+tb, s+t=1 HO-20-AH AH=s+tc とおき、 CH⊥AB, BH⊥AC より, CH AB=0, BHAĆ=0& 利用して s, tの値を求める. 80HA 4-8-80-80-HA 040 05: HAS+70-5A+A6-50 9 ✔ AL 2 Tel² € SE f f

回答募集中 回答数: 0
数学 高校生

4ページ目の"ク"についてです。 求め方が、解答の波線のような式になる理由を教えていただきたいです🙇‍♂️ 少し長い問題なのですが、よろしくお願いします。

第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題)(配点20) 以下のように,歩行者と自転車が自宅を出発して移動と停止を繰り返して る。 歩行者と自転車の動きについて, 数学的に考えてみよう。分 自宅を原点とする数直線を考え, 歩行者と自転車をその数直線上を動く点とみ なす。数直線上の点の座標がy であるとき、その点は位置y にあるということに する。また,歩行者が自宅を出発してからx 分経過した時点を時刻xと表す。歩 行者は時刻 0に自宅を出発し,正の向きに毎分1の速さで歩き始める。自転車は 時刻に自宅を出発し、毎分2の速さで歩行者を追いかける。 自転車が歩行者に 追いつくと、歩行者と自転車はともに1分だけ停止する。 その後, 歩行者は再び 正の向きに毎分1の速さで歩き出し、 自転車は毎分2の速さで自宅に戻る。 自転 車は自宅に到着すると, 1分だけ停止した後、 再び毎分2の速さで歩行者を追い かける。これを繰り返し, 自転車は自宅と歩行者の間を往復する。 0800 x=a を自転車が回目に自宅を出発する時刻とし, y = b" をそのときの歩 010 188.0 8.0 行者の位置とする。 OEREA 018.0 OPTECTED a100 TRE 0888.0 C ECOD exco (1) 花子さんと太郎さんは,数列{an}, {bn}の一般項を求めるために, 歩行者 と自転車について,時刻xにおいて位置にいることを0を原点とする座標 20 ATAP Rosa 08.1 数学II・数学B 第4問は次ページに続く。) 0 平面上の点(x,y) で表すことにした。 BIOP 501020 TIBA.0 S180 8084.0 508 T28.0 8.00881.0 80. DERAD AERA O SER.O TEGO 200 120.000.0 80.00 8380 3888,0 8408.01.1 00.0 8804.0 selo 100.00000.0 tep OCTOP:0 STRAITEOOTED 0.000 0 PTO BITE.0 e.r OS IS SS ES a.s 8.5 00000 9800.0 RB03.00808825005806.00 1 0000 900000yennine が成り立つことがわかる。まず b bi を得る。この結果と 2 である。 10 a2= a=2,61=2により, 自転車が最初に自宅を出発するときの時刻と自転 車の位置を表す点の座標は (2,0)であり,そのときの時刻と歩行者の位置を 表す点の座標は (22) である。 また, 自転車が最初に歩行者に追いつくとき である。よって の時刻と位置を表す点の座標は H+*D a 1 イ . b2= (1#TAGION 6 花子: 数列{an}, {bn}の ウ ア a2 ア 一般項について考える前に, ア (8) 太郎:花子さんはどうやって求めたの? ア の求め方について整理してみようか。 花子 自転車が歩行者を追いかけるときに, 間隔が1分間に1ずつ縮まっ ていくことを利用したよ。 太郎 : 歩行者と自転車の動きをそれぞれ直線の方程式で表して,交点を計 は算して求めることもできるね。 (数学ⅡⅠ・数学B 第4問は次ページに続く。)

回答募集中 回答数: 0