学年

教科

質問の種類

数学 高校生

(1)の問題です! ①黄色い線で引いたところについてなんですが、なぜD>0じゃなくてD≧0なんですか?D=0は解は1つなると習いましたが。 ②青い線で引いたところについてですが、1より大きくならないといけないのにどうして0になってるんですか?

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 p.87 基本事項 2 答 指針 2次方程式 x2-2px+p+2=0 の2つの解をα β とする。 (1)2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。→α-3とβ-3が異符号 以上のように考えると,例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判 | 別解] 2次関数 別式をDとする。 (0+1)=2) | (1) 1 =(b+1)(p-2)= f(x)=x2-2px+p+2 このグラフを利用する。 D=(-)²-(p+2)=p2-p-2=(p+1)(p-2) 解と係数の関係から a+β=2p, aβ = p+2 (1) α>1,β>1であるための条件は 20 D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0 から よって (p+1)(p-2)≥0 p≤−1, 2≤p ...... ①e-(8-88- (α-1)+(β-1) > 0 すなわち α+ β-2> 0 から 2p-2>0よってp>1: ② (α-1) (B-1)>0 すなわち αβ-(a+β) +1>0 から Op+2-2p+1>0),(E- x=p> 軸について f(1)=3-p>0 から 2≦p<3 カ 0 10 x=py=f( a P B よって <3 ...... ③ 求めるかの値の範囲は, 1, 2, ST ③の共通範囲をとって -10 123 p (2) f(3)=11-5p<0 p> 11 い 解 題意から,α=βは えない。 2≤p<3 (2) α <β とすると, α<3<βであるための条件は (a-3)(B-3)<0 すなわち αβ-3(a+B)+9<0 ゆえに p+2-3・2p+9 < 0 - 30 SI 11 よって p> SI A=x #301

未解決 回答数: 1
数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0