学年

教科

質問の種類

数学 高校生

5/54が答えだとダメな理由が分かりません🙇🏻‍♀️

重要 例題 64 ベイズの定理 00000 袋Aには赤球 10個, 白球 5個, 青球3個袋Bには赤球8個, 白球4個, 青球 16個袋Cには赤球4個 白球3個, 青球5個が入っている。 3つの袋から無作為に1つの袋を選び、その袋から球を1個取り出したところ白 球であった。それが袋から取り出された球である確率を求めよ。 基本63 指針 である。 袋Aを選ぶという事象をA, 白球を取り出すという事象をW とすると, 求める確率 P(WA) は条件付き確率 P(A)= P(W) よって,P(W), P(A∩W) がわかればよい。 まず, 事象 Wを次の3つの排反事象 [1] Aから白球を取り出す。 [2] Bから白球を取り出す。 [3] Cから白球を取り出す に分けて、P(W) を計算することから始める。 また P(AW)-P(A)P (W) 袋A, B, C を選ぶという事象をそれぞれA, B, C とし、複雑な事象 解答 白球を取り出すという事象をWとすると P(W)=P(A∩W)+P(B∩W)+P(COW) =P(A)P (W)+P(B)」(W)+P(C)P(W) p=2.5 /1 4 1 3 + + 3 18 3 18 3 12 5 54 排反な事象に分ける <加法定理 <乗法定理 A B C AnW BOW Cow WS 54 27 2 1 = -34+ 12/7+ 1/2-1/101 4 よって、求める確率は Pw(A)= P(A∩W)_P(A)P (W) 5 1 10 = ÷ P(W) P(W) 54 4 27 ( ベイズの定理 検討 上の例題から,Pw(A)= P(A)P (W) P(A)P^(W)+P(B)P₂(W)+P(C)Pc(W) が成り立つ。 一般に、n個の事象 A1, A2,..., A. が互いに排反であり、そのうちの1つが必ず起こる ものとする。 このとき, 任意の事象Bに対して、 次のことが成り立つ。 P(A)P(B) P(A)= P(A1)P, (B)+P(A2)Pi, (B)+....+P(A)P. (B) (k=1, 2,......,n) これをベイズの定理という。このことは、B=(AB)U(A∩B)U...... U (A0B) で、 AB, A2B,...... ABは互いに排反であることから,上の式の右辺の分母がP(B) と一致し、 Pr (A)= P(BA) P(A∩B) P(B) かつ P(A∩B)=P(A) PA, (B) から導か P(B) れる。

回答募集中 回答数: 0
数学 高校生

赤線部分の意味が分かりません🙇🏻‍♀️

重要 例題 57 独立な試行の確率の最大 423 00000 さいころを続けて100回投げるとき,1の目がちょうど回 (0≦k≦100) 出る確 率は 100Ck × 解答 6100 であり,この確率が最大になるのはk= のときである。 [慶応大] 基本49 かし,確率は負の値をとらないことと nCr= や階乗が多く出てくることから, 比 pk+1 (ア) 求める確率をDとする。 1の目が回出るとき,他の目が100回出る。 (イ)確率pk の最大値を直接求めることは難しい。 このようなときは,隣接する2項 k+1とかの大小を比較する。大小の比較をするときは,差をとることが多い。し n! r!(n-r)! を使うため、式の中に累乗 をとり、1との大小を比べるとよい。 þk pk Dk+11pk<D+1 (増加), pk pk+1 <1⇔pk>ph+1 (減少) CHART 確率の大小比較 Et pk+1 をとり、1との大小を比べる pk さいころを100回投げるとき, 1の目がちょうど回出る 確率を とすると 6 Dk = 100 Ck ( 11 ) * ( 5 ) 100 * = 100 Cr× 75100-k 6100 pk+1 100!.599-k ここで × pk (k+1)!(99-k)! k!(100-k)! 100!-5100-k 出 k! (100-k)(99-k)! 599-k 100-k (k+1)k! 5.59-5(k+1) (99-k)! Dk+1 > 1 とすると >1 pk 5(k+1) 両辺に 5(k+1) [0] を掛けて100k5(k+1) 10月 「反復試行の確率。 pk+1=100C(+) X 5100-k+1) 6100 ・・・の代わりに +1とおく。 2章 独立な試行・反復試行の確率 95 これを解くと k<- =15.8··· 6 よって, 0≦k≦15のとき Pr<Pk+1 は 0100 を満たす 整数である。 Dk+1 <1 とすると 100-k<5(k+1) pk pkの大きさを棒で表すと 95 これを解いて k> -=15.8・・・ 最大 (C) 増加 減少 よって, 16のとき pk> Pk+1 したがって po<かく...... <か15<16, P16> D17>>P100 2012 よって, Dr が最大になるのはk=16のときである。 15 17 16 100/ 99

回答募集中 回答数: 0
数学 高校生

汚くて申し訳ないです💦 inf(写真下部)について質問です。 文章の理解はできたのですが、★部分をもう少し具体例で理解したいと思いました。例えばどんなものがあるのか教えていただけませんか?

トを問 4で外接する2円 0, 0' がある。 Aにおける共通接線上 点A の点Bを通る1本の直線が円0と2点C, Dで交わり, B 00000 明せよ。 を通る他の直線が円 0′ と 2点E, F で交わるとする。こ のとき, 4点C, D, E, F は1つの円周上にあることを証 OA OXF p.394,395 基本事項 3. 基本 82 403 CHART & SOLUTION 1つの円周上にあることの証明 方の定理の逆 4点が1 から、「べきの定理の逆」 を利用する方針で考える。 1つの円周上にあることは, 「円周角の定理の逆」, 「内角と対角の和が180°」, 「方べ の定理の逆」のいずれかを利用すれば示せるが,この問題では角度についての情報がな 4点C,D,E,F を通る円をかいてみると, 示すべきことが BC BD BE BF であること が見えてくる。 円0において,方べきの定理から B E ← 接線 BA, 割線 BD ←接線BA, 割線 BF BC・BD=BA2 円 0′において, 方べきの定理から 0 よって BE・BF=BA2 BC・BD=BE・BF ゆえに、方べきの定理の逆から、共 3 10 円と直線、2つの円 4点C,D,E,Fは1つの円周上にある。 に 内 inf 方べきの定理 PA・PB=PC・PD において PA・PB の値をべきという。ここで,円の半径をr とすると, [1] A 右図の [1] のとき PA・PB=PC・PD=(CO+OP)・(QD-QP) =(z+OP)(r-OP)=-QP2 [2] C D OP B B 右図の [2] のときは,同様の計算で PA・PB=OP2-r2 したがって, PA・PBの値は|OP2-2に等しい。OP2は, 点Pが固定されていれば一定の値である。すなわち 定点Pを通る直線が0と2点A,Bで交わるとき, PA・PBの値は常に一定である。 PRACTICE 90 金 円に、円外の点Pから接線 PA, PB を引き, 線分AB と PO の交点を通る円Oの弦 CD を引く。 このとき, 4点P,C, ODは1つの円周上にあることを証明せよ。 ただし, C,Dは P 足理 26 MI D B

回答募集中 回答数: 0
数学 高校生

数学1Aです! (タ)の求め方がわかりません。図の書き方が分からず悩んでいます。特に蛍光ペンのところがわからないです…どなたかよろしくお願いします🙇‍♀️

数学Ⅰ (2)太郎さんの住んでいる街にはK電鉄のA 駅, B 駅, C駅があり, A駅とB駅の 間の線路はまっすぐである。 「STATION A 駅 3駅の位置関係は A駅とB駅の間の直線距離が13km 駅 数学Ⅰ (i) 太郎さんはスマートフォンを持って電車に乗り, A駅からB駅まで移動した。 出発時にアプリに表示されていたのはA駅のみであったが, 出発からちょうど 分後にアプリに ソ ソ の解答群 STATION 10000 +++ B 駅 A駅とB駅の2駅のみが表示された ① A駅とC駅の2駅のみが表示された ② A駅とB駅とC駅の3駅が表示された (i) 1年後にC駅が移転し、 移転後の3駅の位置関係は B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が12km である。 また, 近隣に他の駅はない。 太郎さんのスマートフォンには最寄り駅が表示されるアプリが入っている。 ただ し,最寄り駅とは,スマートフォンからの距離が最も近い駅のことである。 そのア プリでは, 最寄り駅が複数ある場合はすべての駅が同時に表示される仕様になって いる。 以下では,駅および太郎さんがスマートフォンを持って乗っている電車は同じ平 面上の点とみなす。 また, A駅からB駅まで運行する電車はA駅とB駅を結ぶ線分上を動くものと し, その速度は加速・減速を無視し, つねに時速78km であるとする。 A駅とB駅の間の直線距離が13km B駅とC駅の間の直線距離が 5km C駅とA駅の間の直線距離が10km となった。 C駅の移転後に, 太郎さんはスマートフォンを持って電車に乗り, A駅からB 駅まで移動した。 このとき, アプリに複数の駅が最初に表示されるのは,出発か らおよそ タ 後である。 その後、 再び複数の駅が表示されるのは,B駅に到 着するおよそ チ 前である。 タ の解答群 3分46秒 3分56秒 ② 4分6秒 ③ 4分16秒 C駅 12 km 5km チ の解答群 AR 13km B 駅 ⑩ 2分40秒 ① 2分55秒 ②3分10秒 ③3分25秒 (数学Ⅰ第2問は次ページに続く。) 31

回答募集中 回答数: 0