学年

教科

質問の種類

数学 高校生

高校生数学円と直線です。 下の赤線で印つけてる部分なんですが、計算しても答えにならないというか、計算できません、、、。 どなたか途中式も含めて解説お願いします🙇

原の数順 ※ F オ lit "IT イ ( ← →①, とすると, ③は2つの (2)③が直線を表すときのんは? (3) ③ 解答 ときは? (SS-) E (1)円 ①,② の半径は順に5, 2 である。(SS)( 2つの円の中心 (0, 0, 1, 2) 間の距離をdとすると d=√12+2°=√5から |√5-2 <d<√5 +2 も よって,2円 ① ② は異なる2点で交わる。e="-g)+ (2) k(x²+ y²−5)+(x−1)²+(y−2)²−4=0 (k (±) ...... (3) inf. -k とすると,③は2つの円①,② の交点を通る図形を表す。 ことはできない これが直線となるのは k=-1 のときであるから,③③がx.yo k=-1 を代入すると (x2+y2-5) +(x-1)+(y-2)2-4=0 整理すると x+2y-3=0 ② 半径2 (2) (3) la x なるように、 定める。 if (2) の直線の ①の円の方 立させて解くと きで る場 解 (1) 01 (3)③点 (03) を通るとして, ③ に x=0,y=3 を代入して整理 円の交点 すなわ ① k=1 ①と②の 円 1 半径5 められる。 すると 4k-2=0 よって k=2 共 (02+32-5) これを③に代入して整理すると(x-2/3) 3+ (11/28) 2 = 02/09 +{(-1)^+1- 3 9 よって 中心 ( 11 ) 半径 129 " 3 3 3 PRACTICE 94° 2つの円x2+y2=10,x2+y²-2x+6y+2=0 の2つの交点の座標を求めよ。 2つの交点と原点を通る円の中心と半径を求めよ。

解決済み 回答数: 1
数学 高校生

y切片の√2ってどうやって求めるんですか?! 教えて下さい😭🙏🏻

基本 例題 119 三角関数のグラフ (2) 関数 y=2cos 00000 (オイ)のグラフをかけ。また,その周期を求めよ。 CHART & SOLUTION CEDO 関数のグラフ 基本形 (y=sin0, y=cos0,y=tan9) にもち込む ①拡大・縮小 ②平行移動 式を見て, 0軸方向へのの平行移動と考えるのは誤りである。 πC y=2cos (24) から y=2cos 1/2(-2) 基本形 y=cos ①をもとにしてグラフをかく要領は次の通り。 [1] ①をy軸方向に2倍に拡大 [2] ②を軸方向に2倍に拡大 π [3] ③を軸方向にだけ平行移動 →y=2cos0 y=2cos 基本 118 195 グラフ ② 4章 12921- 日 グラフ ③ 2 16 → y=2 cos +1/1 (0-1/2) π ..... グラフ ④ 三角関数のグラフと応用 解答 0 π ①y=2cos (-4) から y=2 cos 1/1/1(0 - 17/1) π よって,与えられた関数のグラフは,y=cosÔ のグラフを 軸方向に2倍に拡大, 0軸方向に2倍に拡大して更に, 0 軸方向にだけ平行移動したもので,下図のようになる。 -=4π 周期は2÷1.2= ④y=2cos(14) ③y=2cos / 0 π ← を0の係数 2 4 でくくる。 if 実際にグラフをかく ときには,図の① ② ③ をかく必要はない。 ④の 周期が4πであることに着 目し, 曲線上の主な点をと りなめらかな線で結んで かけばよい。 ・π 3-2+ 52+ π 2 52+ 321 2 πT 2π + 3π 4π 5π 172 2- 9 ・π 2 π ①y=cosey=2cos> 100 -2π TOT 2 2 -2 6π

解決済み 回答数: 1
数学 高校生

三角関数の問題についての質問です。青マーカーを引いたところなのですが、なぜ-4≦a≦0ではダメなのですか?軸が0、1の時も一応共有点は持つということになると思うのですが。2番目でf(0)=0やf(1)=0となる場合を考えているから必要ないということでしょか。

150 と 294 第4章 三角関数 Think 例題 152 三角関数を含む方程式の解の存在条件 **** OOT とする. 0 の方程式 -cos20+asin0+a=0 1 を満たす 0が存在するための定数 αの値の範囲を求めよ. ( 岩手大改) 使え方 gin0 とおくと、2倍角の公式を利用して、の2次方程式として考えることがで きる 共有点を考えるとよい . まり、その2次方程式の解の存在範囲の問題となるので、 2次関数のグラフと軸の a α Bt tのとり得る値の範囲に注意しながら, 実数解 tの存在範囲を調べればよいが, そのと ときの着眼ポイントは, 「区間の端点の符号」, 「軸と区間の位置関係」, 「判別式 ( き,上のようにいろいろな場合が考えられ, 場合分けの必要がある. 場合分けをする は2次関数のグラフの頂点のy座標)」である。 解答 t=sin0 とおくと,0≦πより, 0≤t≤1 ② cos20=1-2sin'0=12t より ①に代入して, もの値の範囲に注意 する. do-(1-2t2)+at+a=0 つまり, 2t2+ at + α-1=0 ......③3 全国でしたがって, ①を満たす 0 が存在するための条件は,区 間 ②において,tの2次方程式 ③が少なくとも1つの実数解 をもつこと,つまり,③より,f(t)=2t+atta-l とお ふとy=f(t)のグラフが区間 ②でt軸と少なくとも1つ の共有点をもつことである. m (i) f(0) f(1) が異符号のとき つまり,f(0)f(1) 0 のとき f(0)=a-1 f(1)=2+a+a-1=2a+1 したがって, (a-1)(2a+1) < 0 よって、 << if(0)=0 または f(1)=0 のとき niannie つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 m 最終的に2次関数の 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注》 を参照) f(0)>0,f(1)<0 または、 f(0) < 0, f(1)>0 より f(0)f(1) <0 f(0) = 0 のとき, す 0 1 よって, a=- または a=1 でに t=0 が③の解 となるのでf(1) の符 号は関係ない. 207 0 me med

解決済み 回答数: 1