回答
回答
That is a Strictly Increasing Function and a special case of Jensen's inequality for convex functions. The logarithm function is concave, and Jensen's inequality tells us that for a concave function, the function's value at the average point is greater than or equal to the average of the function's values.
On the contrary, if we consider the situation with a convex function, the value of the function at the average point will be less than or equal to the average of the function’s values.
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8919
116
数学ⅠA公式集
5638
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5134
18
詳説【数学A】第3章 平面図形
3607
16