回答
回答
That is a Strictly Increasing Function and a special case of Jensen's inequality for convex functions. The logarithm function is concave, and Jensen's inequality tells us that for a concave function, the function's value at the average point is greater than or equal to the average of the function's values.
On the contrary, if we consider the situation with a convex function, the value of the function at the average point will be less than or equal to the average of the function’s values.
疑問は解決しましたか?
この質問を見ている人は
こちらの質問も見ています😉
おすすめノート
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8918
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6063
51
詳説【数学A】第2章 確率
5839
24