学年

教科

質問の種類

数学 高校生

D=0としたときは2つの与式が接する場合だとはわかりますが、これで(0,3)で接するのはなぜ含まれていないのでしょうか

164 重要 104 放物線と円の共有点接点 放物線y=x+αと円x+y=9について、次のものを求めよ。 (1)この放物線と円が接するとき、 定数αの値 (2)異なる4個の交点をもつような定数の値の範囲 指針 放物線と円の共有点についても、これまで学習した方針 接点 共有点実数解 で考えればよい。 この問題では、xを消去して、yの2次方程式(yu)+データの 実数解解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1)放物線と円が接するとは、円と放物線が共通の接線をも つことである。この問題では、右の図のように、2点で接する 場合と1点で接する場合がある。 (2)放物線を上下に動かし、(1)の結果も利用して条件を満たす の値の範囲を見極める。 0001 147 接する 2点です xを消去すると、 (1) y=x'+α から x=y-a 解答 これをx+y=9に代入して よって y²+y-a-9=0 ここで,x2+y=9から (y-a)+y2=9 次方程式が導かれる。 ① x2=9-20 ゆえに -3≤y≤3 [1] 放物線と円が2点 [1] で接する場合 D [2] a=-3 34 2次方程式 ①は②の 3 3 3- 範囲にある重解をもつ。3 よって、 ①の判別式を 13 0 0 AM -3 13 -30 Dとすると D=0 D=12-4-1-(-a-9) =4a+37 37 であるから 4+370 すなわち a=― 4 このとき、①の解はy=- 12となり、②を満たす。 2次方程式 by² +qy+r=00 [2] 放物線と円が1点で接する場合 重解はya- 図から, 点 (0.3), (0, -3) で接する場合で α=±3 以上から、求めるαの値は a1- (2) 放物線と円が4個の共有点をもつのは,右の図から、 頂点の座標に 34 37 ±3 4 放物線の頂点 (0, 4)が,点 (0.2) から点 (0-3) を結ぶ線分上 (端点を除く)にあるときである。 したがって -37 <a<-3 4

解決済み 回答数: 1
数学 高校生

数学B、数学的帰納法の問題についての質問です。 下の赤いボールペンで線を引いた下から2行目のn=2kの部分ですが、この時「kは自然数」や「kは整数」などの断り書きはしなくても良いのでしょうか? 普通の帰納法の問題では、n=kで命題の成立を仮定する時に、nが自然数なのでn=k... 続きを読む

EX (1,2, b1=1 および 033 1+1=2+3b, b+1=a+2b(n= 1, 2, 3. ......) で定められた数列{a}{b}がある。 Cab とするとき (1) C2 を求めよ。 (2) Cm は偶数であることを示せ。 (3)が偶数のとき, C7は28で割り切れることを示せ。 [北海道太] ←各漸化式に n=1 を代 b2=a1+2b1=2+2・1=4 (1) a2=2a1+3b」=2・2+3・1=7, よって C2=azbz=7.4=28 (2) [1] n=1のとき C=ab=21=2であるから, Cn は偶数である。 [2] n=kのとき, C が偶数であると仮定すると, Ck=2mm は整数)と表される。 n=k+1のときを考えると Ck+1=ak+1bk+1=(20+3bk) (+20k) =2a2+7akbk+65k2 =2ak+7.2m+60m² =2(ax²+7m+3bk²) +7m+3bk2は整数であるから, Ck+1 は偶数である。 よって, n=k+1のときも成り立つ。 [1] [2] から すべての自然数nに対してcmは偶数である。 (3) [1] n=2のとき C2=28であるから, C7は28で割り切れる。 [2] n=2kのとき, C2kが28で割り切れると仮定すると, C2k=28m (mは整数)と表される。 入する。 ←数学的帰納法で証明。 ←akbn=ch=2m ←漸化式から、すべての n に対して, an, bm は整 数である。 ←数学的帰納法で証明。 [n=2, 4, .... 2k, ... が対 象である。

解決済み 回答数: 1