学年

教科

質問の種類

数学 高校生

(2)番です。答えは合っているのですが、私の求めた求め方がたまたまあったのかどうかを知りたいです。教えてください。

例題 13 二項定理の利用 次の問いに答えよ. **** (+) (1) 21=1+20 として, 二項定理を利用して, 21 を400で割ったとき の余りを求めよ. (京都教育大・改) (2) 1011 の下位5桁を求めよ. (お茶の水女子大改) 利用し,二項定理を使う. 考え方 (1) 21=1+20 より 21=(1+20) となるので, 21=1+20, 400=202 であることを M M 101=1+100 より 101= (1+100)利用することを考える 解答 (1) 21=(1+20)21 21C020°+21C120 wwwww +21C2202+ 101100=(1+100) 100=(1+102) 100% +21C202020+ 21 C2120212-(z) 400=20°より,21C2202 +... +21C2120は400の 倍数となる. 400の倍数とならない項, つまり,21020021C,201 を考えると, で 21Co20°+21C20'=1×1+21×20 =1+420 二項定理で展開する M' 部分の項はすべ て202で割り切れる 残った部分の頃より 余りを求める. 200=1 01=1+p+cp s =421 =400+21 よって、400で割った余りは, 21.=p このは (2)101100 =(1+100)=(1+102)100 =100Co(102)+100C (102)'+100 C2 (102) 2 +100C3(10)+100C99 (102) 99+100C100 (102) 100 AC3 (102) ++100 C100 (102) 100 は (102) 1000000 www 101 部分の項は下 M 5桁がすべて0に の倍数であり,下位5桁がすべて0になるので、残りるため計算しなく の項を考えると, 100C(10%)+100(102)'+ 100C2(102)2 100.99 -X 10000 2 =1+100×100+ =1+10000+49500000 =49510001 よって,下位5桁は,10001 みよい。

解決済み 回答数: 1
数学 高校生

どこが間違っているか教えて頂きたいです🙇‍♀️

けると 5・(-3)+6・3=3 すなわち, m=-3, n=3は,5m+6n=3...... (**) の 整数解の1つである。 以下同様。 128 よって n=11x+9, n=5y+2 11x+9=5y+2 求める自然数nとすると, n は x,yを整数として,次のよう に表される。 PR 11で割ると余り, 5で割ると2余る3桁の自然数のうち最大の数を求めよ。 すなわち 5y-11x=7 ① y=-2, x=-1 は, 5y-11x=1 の整数解の1つであるから 5・(-2)-11・(−1)=1 両辺に7を掛けると 5(-14)-11・(-7)=7 ①-②から 5(y+14)-11(x+7)=0 すなわち 5(y+14)=11(x+7) ③ ② 511は互いに素であるから, ③を満たす整数xは αを6で割った商を4, 余りをrとすると a=bg+r まず, ①の右辺を1と した方程式 59-11x=2 の整数解を求める。 別解 ① から直接数 解x, yの1つ(x=3, y = 8 など) を求めても よい。 その場合, 5・8-11・3=7 ②とし て計算を進めればよい。 x+7=5k すなわち x = 5k-7 (kは整数) と表される。 したがって n=11x+9=11(5k-7)+9 =55k-68 55k-68が3桁で最大となるのは、55k-68999 を満たすん が最大のときであり,その値は このとき k=19 n=55・19-68=977 求める自然数をとすると n = 11x+9 m5y+2 よって、11x+9=5y+2 2-9 すなわち、11x-5y=-7-1 x=-4.y=-9は11x-5g=1の物の 11×(-4)×(-7)-5×(-9)×(-1)-7 11×28-5×63② x=28.y=63は、1157の整数解の1つである ①-②から、11とちは互いに素であるから、③を満たす 11x-5y=-7 -11×28-5×63=-7 11(x-28)-5(-63)-0 整数では、 111x-28)=5(y-63) -③ (x-28)=5kとする x=5k+28(kは整数)と表される。 したがって、n=113+9=11(5k+28)+9 = 55k+41.7 のとき 55k+417が3桁で最大となるのは 55k+417≦999を満たすkが最大であり、 408 417 満たすの値は、k=10 550 +417 967 このとき、n=55×10+417967 55k-68999 から 999 +68 k≤ 55 =19.4

解決済み 回答数: 1
数学 高校生

181(2)です。 解説の下から3行目、「R(1-R)は最大値1/4をとる」からその下の「したがって、〜」の部分で質問です。 なぜ「R(1-R)は最大値1/4をとる」から最小のnを導くことができるのでしょうか。

E(X) +VO 181. (1) Mは二項分布 B(n, 1/2)に従うから、 1 n E(M)=n=2, V(M)=n.- 22 4 ここで, X=10M+5(n-M)=5M+5n であるから, E(X)=E(5M+5n)=5E(M)+5n=5・1/2+5, (1)X を M を用いて表し, E(aM+6)=aE(M) +6 V (aM+6)=d2V (M) ( a, b は定数) を利用する。 15 = 2" また,V(X)=V(5M+5n)=52V(M)=4 25 -n )+b 25 o(X)=1 n=- 4 5 del n 2 6(X) E(X) 1 <0.1 となるとき, 512 n=- <0.1 2 2 3√n 10 1º<√n, n> 3 X) 100 9 =11.111... したがって、条件を満たす最小の自然数nの値は, 12 (2) 信頼区間の幅は, R+1.96X, XR(1-R) =2x1.96× -R)) -(R-1 n R(1-R) R-1.96× n R(1-R) = 3.92× n n R(1-R) よって、信頼区間の幅が 0.1以下となるとき, (2)R は, 10円硬貨を取り出す標 本比率であるから, 0以上1 以下の値をとる。 この範囲で、Rの値によらず つねに信頼区間の幅が 0.1以 下となるような自然数nの最 小値を求める。 3.92X R(1-R) ≦0.1, n 39.2×√R(1-R) Sn 1536.64 × R (1-R)≦n R: ここで,R(1-R)=(R-1/2)+ -R-12122+1/2より、R=/1/23 のとき, R(1-R) は最大値 - をとる。 したがって n≧1536.64× 1=384.16 よって、条件を満たす最小の自然数nの値は, 385

解決済み 回答数: 1