学年

教科

質問の種類

数学 高校生

61.1 このような記述でも大丈夫ですよね??

0000 式という えると の2 a+by^- 201 X [日本 2行目の式 1 x 解答 を断ってから 一割る。 なお (1)xを1の3乗根とすると 程式の左 ゆえに x³-1=0 (左辺=2 したがって を入れ 1-1- x この式と 1 ot Hit 基本例題 61 (1) 1の3乗根を求めよ。 (2)1の3乗根のうち, 虚数であるものの1つをとする。 (ア)2も1の3乗根であることを示せ。 1 えることが 1 指針 (1) (2) (1) w²+w³, +1+1, (w+2w²)²+(2w+w³²)² iznenkok. 2 (2) ア @= これを解いて, 1の3乗根は -1+√3i 2 練習 61 1の3乗根とその性質 基本58 3乗してαになる数,すなわち、方程式x=αの解を,αの3乗根という。 (1)で求めた方程式x=1の虚数解を2乗して確かめる。 (ア) (イ)は方程式x²+x+1=0, x=1の解→ ²+ω+1=0, ω²=1 2 -√3 i 4 口を よって, w2も1の3乗根である。 -91+2 (1) ω は方程式x+x+1=0, x=1の解であるから ω'+ω+1=0,ω'=1 よって x-1=0 または x²+x+1=0 -1+√3 i 2 とすると i 0 ² = ( = 1 + 2√³²)² =. 1-2√3 i+3i²_-1-√3i 2 とすると x³ =1 「POINT」 1. w²=(1-√3i)°_1+2√3i+3p _ _1+√3i 2 141 w² (x-1)(x²+x+1)=0 w²+w=(w³)² w+(w³) ² w²=w+w²=-1 w+1+w² w² よって また -=0 W ω'+ω+1=0から, w2=-ω-1 となり (w+2w³)²+(2w+w³)² = {w+2(-w-1)}²+(2w-w-1)² =(-w-2)²+(w-1)²=2w²+2w+5 +1= =2(-ω-1)+2+5=3 00000 (1) 200+50 (3) (w200+1)100+(ω100+1) 10 +2 3次方程式の解は複素数の 範囲で3個。 ω はギリシャ文字で、 オ メガ」と読む。 (検討) x=1の虚数解のうち、どち としても,他方が となる。よって、1の3乗根 it 1, w, w¹ ω'=1 を利用して, 次数を 下げる。 ω=-ω-1 を利用して、 次数を下げる。 12(w²+w+1)+3=2-0+3 としてもよい。 1の虚数の3乗根の性質 ①2+ω+1=0 ② ω'=1 がx2+x+1=0の解の1つであるとき,次の式の値を求めよ。 1 1 w² p.110 EX44 99 2章 11 高次方程式

回答募集中 回答数: 0
数学 高校生

116.4 a^2019を7で割り切れないのは3^2019 であることを示してから、 2019を3で割る作業を続けても◯だと思いますが、 下の方[3^3≡6(mod7),6^2=1(mod7)]を用いた方が 効率的ですよね? また、記述的にはどちらを書いても◯ですよね??

lines 486 00000 基本例題 116 割り算の余りの性質 a,bは整数とする。 α を7で割ると3余り, 6を7で割ると4余る。このとき、 次の数を7で割った余りを求めよ。 (1) a+2b (2) ab (3) aª p.485 基本事項 ① ③3 指針 前ページの基本事項③の割り算の余りの性質を利用してもよいが, (1)~(3) は、 161704 a=7g+3,6=7g' +4 と表して考える基本的な方針で解いてみる。 (3)(7g+3)* を展開して,7×の形を導いてもよいが計算が面倒。 d'=(a)2 に着目 し,まず, a²を7で割った余りを利用する方針で考えるとよい。 【CHART 割り算の問題 (4) 割り算の余りの性質 4α” をmで割った余りは, r” をmで割った余りに等しい を利用すると,求める余りは 「32019 を7で割った余り」であるが,32019 の計算は不可能。 このような場合、まずα” を m²で割った余りが1となるnを見つけることから始める のがよい。 A=BQ+R が基本 (割られる数) = (割る数)×(商)+(余り) 解答 a=7g+3, b=7g' +4 (g, g′ は整数)と表される。 (1) a+26=7g+3+2(7g'+4)=7(g+2g') +3+8 =7(g+2g′+1)+4 したがって, 求める余りは 4 (2) ab=(7g+3)(7q'+4)=49gg'+7(4g+3g′)+12 =7(7gg'+4g+3g' + 1 ) +5 したがって 求める余りは 5 (3) a²=(7q+3)^=49g²+42g+9=7 (7g²+6g+1)+2 よって, d²=7m+2mは整数)と表されるから α^=(a²)²=(7m+2)=49m²+28m+4=7(7m²+4m)+4 したがって 求める余りは 4 (4) を7で割った余りは, 3°を7で割った余り6に等しい。 よって, (a)2=a を7で割った余りは, 62=36を7で割った 余り1に等しい。 a2019a2016 (α6) 336.3であるから, 求める余りは, 1336.6=6を7で割った余りに等しい。 したがって 求める余りは 6 (4) 2019 練習 ②② 2 116 き,次の数を5で割った余りを求めよ。 (1) 6 (2) 3a-2b (3) 62-4a 別解 割り算の余りの性質を 利用した解法。 (1) 2を7で割った余りは 2 (27.0+2) であるから, a,bは整数とする。 αを5で割ると2余り, d²-b を5で割ると3余る。 このと 26 を7で割った余りは 2・48を7で割った余り1 に等しい。 ゆえに, a+26を7で割っ た余りは3+1=4を7で 割った余りに等しい。 よって、求める余りは 4 (2) ab を7で割った余りは 3・4=12を7で割った余り に等しい。 よって、求める余りは 5 (3)α を7で割った余りは 3* = 81 を7で割った余り に等しい。 よって, 求める余りは4 (4) 299 (p.491 EX81 )

回答募集中 回答数: 0
数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
数学 高校生

18.3 6個あるものから4つ選び(6C4)、 その中の1つを固定して考えた(3!)のですが この解き方でも大丈夫ですかね??

324 基本例題 18 円順列・じゅず順列 (1) 異なる6個の宝石がある。 (1) これらの宝石を机の上で円形に並べる方法は何通りあるか。 (2) これらの宝石で首飾りを作るとき, 何種類の首飾りができるか。 (3) 6個の宝石から4個を取り出し, 机の上で円形に並べる方法は何通りあるか ■p.323 基本事項 解答 (1) 6個の宝石を机上で円形に並べる方法は Po =(6-1)!=5!=120 (通り) 6 (2) (1) の並べ方のうち, 裏返して一致するものを同じものと考 (6-1)! 2 指針 (1) 机の上で円形に並べるのだから, 円順列と考える。 (2) 首飾りは,裏返すと同じものになる。 例えば 右の図の並べ方は円順列としては異なるが, 裏返す と同じものである。 このときの順列の個数は、円順 列の場合の半分となる (下の検討参照)。 (3) 1列に並べると 6P4 これを,回転すると同じ並べ方となる4通りで割る。 200 いずれの場合も基本となる順列を考えて、 同じものの個数で割ることがポイントとなる。 CHART 特殊な順列 基本となる順列を考えて同じものの個数で割る えて (3) 異なる6個から4個取る順列 P4 には、円順列としては同 じものが4個ずつあるから JARL 4 = 60 (種類) 6P4_6・5・4・3 4 -T = = 00000 -=90 (通り) (3) 2 20 3 Q T 1つのものを固定して他の ものの順列を考えてもよい。 すなわち, 5個の宝石を1 列に並べる順列と考えて! 一般に、異なるn個のもの からr個取った円順列の Pr 総数は 4+ (1 (2)

回答募集中 回答数: 0