学年

教科

質問の種類

数学 高校生

普段から図形は書いた方がいいですかね? こういう系の図がへったくそで時間食っちゃうので書かないんですが、書くコツありますか? この問題ではどんな図になるか教えて欲しいです🙏

3iを単位とし、COS・ +isin とする。 (1) イであり、 3n ウイである。 (2) n = (21) カー1 -1 あり、 (3) コである。 また、 (2n-1)-1, n-1 である。 K+ である。 ギ ケで 2 lafe 25× (25点) 14を自然数とし、関数fn (z) =logx (0) とする。 座標平面上の曲線 =jn (z)上の点(a,∫(q))における接線が、座標平面の原点を通るという。 ただし、 log は自然対数を表し、文中のeは自然対数の底を表す。 回 (1) 接線の傾きは |ア + である。 (2)In-fn(x)dx とすると tge el f (3)領域Dの面積は チ シテ 日 シテ である。また、領域Dをェ軸のまわりに1回転させてできる立体の体積は ヌネ ホ ノハヒ ノハヒ である。 f(x) A (x)'g+x (25点) = -n x™ logx tx="x" -n-t グリッx+x -n-I (-vlx+1) い af() x 必ず!! x=a, 9=an log a 3 f alog ath lay a =ah log a + fa 1 Z 2 1 1 z) (1+z) 1 1-2 1 + 1-z 2 1 1+222 + +2z2 ) (1+z²) 21_5 + = 2 1 + 4+ 2 →ス・ 2 T セ Nor 力 ケコ タ 1₁ = 110 = オ キク サシス である。 n=5とする。このとき, 曲線Cと接線およびェ軸によって囲まれた領域 (境界 を含む)をDとする。

解決済み 回答数: 1
数学 高校生

(2)をどうやって求めるか教えてください

6 次の図において、 △ABCは正三角形であり、点DはAC上にある。 また、四角形ADEFはひし形で あり、 AF // BC である。 辺DEと線分CF の交点をG とするとき、 次の問いに答えなさい。 (1) △ABD∽△EFG であることを以下のように証明した。 空欄に最も適するものを下の語群からそれぞれ選び、 番号で答えなさい。 ただし、 同じ文字の空欄には同じ ものが入る。 (証明) ABD と ACF において △ABCは正三角形であるから AB=AC 【語群】 (i) Z (ア) =∠ACB=60°・・・・・・(ii) 四角形ADEFはひし形であるから AD = AF・・・・・・ (iii) ZCAF= (イ) (iv) 仮定より、 AF // BCであるから B =∠CAF・・・・・・ (vi) <CAF = ∠ACB (錯角) ...... (v) (ii), (v)より、 ∠ (ア) (ウ) () F E (i), (), (vi)より、 がそれぞれ等しいから AABDAACF よって、 ∠ADB= ∠ (エ) (vii) △ABD と EFG において AF // DEより、 ∠ (エ) = ∠EGF (錯角) (viii) (vii), (viii)より、 ∠ADB= ∠EGF (ix) △ また、(iv), (vi)より、 ∠ (ア) =2 (イ) (x) (ix), (x)より、2組の角がそれぞれ等しいから AABDAEFG (証明終わり ) (ア) ① ADE ② BAD ③ ADB (イ)・・・・・・ ① AFG ② CDG ③ ADB ④ CAF ④FEG (ウ) ・・・・・・ ① 3組の辺 ② 2組の角 ③ 2組の辺とその間の角 ④ 1組の辺とその両端の角 (エ)・・・・・・ ① AFC ② CGD ③ CAF ④ BDC (2)AD:DC=4:3のとき、 BCD と △CDG の面積の比を、 最も簡単な整数で求めなさい。 49:12 -5-

解決済み 回答数: 1