学年

教科

質問の種類

数学 高校生

青チャート数学I+Aの78番、二次関数の対称移動の問題です。 放物線をX軸方向に-I、y軸方向に8だけ平行移動すると書いてあるのに、どうして+I、-8をしているのでしょうか…? 解答お願いします🙏

p.131 vele fo c) 解答 基本例題 78 2次関数の係数決定「平行・対称移動] 放物線y=x2+ax+bを原点に関して対称移動し、更にx軸方向に -1,y 軸方 向に8だけ平行移動すると, 放物線y=-x2+5x+11 が得られるという。この とき,定数a,bの値を求めよ。 基本 75~77 指針 グラフが複数の移動をする問題では, その移動の順序に注意する。 ① 放物線y=x²+ax+bを,条件の通りに原点対称移動→平行移動と順に移 動した放物線の方程式を求める。 2 ① で求めた放物線の方程式がy=-x²+5x+11 と一致することから、 係数に注目 してα,6の方程式を作り,解く。 または、 別解 のように, 複数の移動の結果である放物線y=-x2+5x+11 に注目し, 逆の移動を考えてもよい。 原点対称 原点対称 y=x2+ax+b C₁ Cz これを解いてa=7, 6=3 放物線y=x2+ax+bを原点に関して対称移動した放物線 の方程式は --y=(-x)+α(-x)+6 すなわち y=-x2+ax-b またこの放物線を更にx軸方向に-1,y 軸方向に 8 だ け平行移動した放物線の方程式は y-8=-(x+1)^+α(x+1)-6 すなわち、 y=-x2+(a-2)x+a-b+7 これがy=-x2 +5x+11 と一致するから a-2=5, a-b+7=11_ 軸方向に1, y 軸方向に8 軸方向に1,軸方向に-8 ONSONY 別解 放物線y=-x²+5x+11をx軸方向に1, y 軸方向 に8だけ平行移動した放物線の方程式は y+8=-(x-1)'+5(x-1)+11 すなわち y=-x2+7x-3 この放物線を更に原点に関して対称移動した放物線の 方程式は -y=-(-x)2+7(-x)-3 すなわち これがy=x2+ax+b と一致するから _a=7, y=-x2+5x+11 x-x y-y C1 とおき換える。 xx-(-1) y →y-8 とおき換える。 xの係数と定数項を比較。 b=3VENGEDA 133 YA 0 y=x²+7x+381040-005001+ C₂ C2 anda C3 10.4 3章 2次関数のグラフとそ xの係数と定数項を比較。 x

回答募集中 回答数: 0
数学 高校生

(2)の解説を詳しくお願いします。 よろしくお願いします

例題 5 二項定理[2] (1)(3x+2y) の展開式におけるxy および xy の係数を求めよ。 (2) (x-2) の展開式におけるの係数および定数項を求めよ。 思考プロセス 定理の利用 <ke Action (a+b)" の展開は, 一般項n Crα"-'b' を利用せよ 例題4 (1) (3x+2y) の展開式の一般項 Cr (3x) 6-7 (2y) = 6C736-12' x-ry 24-7² (r = 0, 1, 2, ---, 6) 係数 x'y', xys となるようなの値は? (2) (x-2)={x+(-1/2)}* の展開式の一般項 練習 5 8 08 201 12-2r C₁ (x²)²-(-²) = C₁ (-2). - (r = 0, 1, 2, ---, 6) x² 係数 解 (1) (3x+2y) の展開式における一般項は 6C (3x)-¹(2y)² = 6C₂36-72″ xy²4.0+ (r = 0, 1, 2, ..., 6) C234224860 6C53¹25 = 576 x^2の係数は,r=2 とおいて xy の係数は, r = 5 とおいて 6 6 (x-2)={x+(-/2/2)}の展開式における一般項は C₁ (2²) ²-7 ( - 2) = の係数について 12-2r=3+r より よって, xの係数は 定数項について, 12-2r=r より よって、 定数項は 43 = x, 定数となるようなの値は? x¹2-27 x² x12-2r x² = 6C₁x²(6-7). (−2) x x12-27 x² (r = 0, 1, 2, ..., 6) x12-2r = x3+r = 6Cr(-2). r = 3 6C3 (−2)3 = 20(-8)= -160 =1 より r=4 =xより x12-27x7 thesengigan «Ca(−2)* = «Cz •16 = 15 · 16 = 240 (1) (4x-y) の展開式におけるxy2の係数を求め上 y'の係数は C36-72 文字の部分がxy² となる のは x-ry' = x^y^2 とお くとr=2のときである。 201+ 一般項の係数は C (-2)* x801-18= 4章の指数関数を学習し た後は,指数法則を用い て 12-27 DIR x-12-3r x² の項の次数は3より 12-3r=3 としてよい。 x12-2003 が約分できて1と 例題 x² なるとき, C, (-2)^1は 定数となる。 すなわち, 展開式の定数項を表す。 思考プロセス 次 (1 (2

回答募集中 回答数: 0
数学 高校生

(2)が分かりません。何で順に選ぶのか、文字の選び方が(ii)と違うのか分かりません。教えてください🙏🙇‍♀️

4 A. B,C,D の文字が1つずつ書かれたカードが4枚ある。この中から無作為に1枚カー ドを取り出して、その文字を記録してもとに戻すことを4回繰り返す。 記録した文字に含 まれる文字の種類の数をXとする。 WAJI (1)X=4 となる確率を求めよ. (2) X =2 となる確率を求めよ. <考え方〉(1) X = 4 となるのは, 4回とも異なるカードが出る場合である. 24AMOS (2) X=2 となるのは,2種類のカードが,1回と3回に分かれて出る場合と,ともに 回 2回ずつ出る場合がある. (1) X=4 となるのは,4回とも異なるカードが出る場合 なので, 4=24 (通り) ある. 4338 よって, X=4 となる確率は, (1) 2回) (2) X2 となるのは,次の2つの場合がある. 件 cter SUD 4! 44 (i) 2種類のカードが1回と3回に分かれて出る場合 2回 1回出る文字,3回出る文字を順に選び、次に1 回出る文字の場所を4回中から1回分選べばよいの で, 4P×4C1 = 12×4=48 (通り) 6 3 64 32 48 36 21 + 44 244 64 = CEO (1) 2種類の 2種類のカードがともに2回ずつ出る場合 2回 2種類の文字を選び、 選ばれた文字のうち, アル ファベット順の早いほうの文字を置く場所を4回中 から2回分選べばよいので, 2回目に 4C2×4C2=6×6=36 (通り) よって, (i), (i) より X =2 となる確率は, LES TOASKAZI 分母と分子を4で割ると, 4!3! 6 44 43 64 三 = れて出る場合文字の選び方は,P2通り and 14-3 かと C 通り 場所の選び方は 4 STANIS 文字の選び方は 4C2 通り 場所の選び方は2通り IMWENCASTRSKI GL ( to Tote sted to the SHMAENGCO 7

回答募集中 回答数: 0
数学 高校生

数学共通テスト重要問題演習の116(2)のみ分かりません(><)必ず良い評価をするので至急回答いただけたら嬉しいです。

116 と表される。 ア ずつ選べ。 OD OD = sOA+(1-s)OQ=sOA+(1-s)(ア と表される。また,点Dは直線CP上にあるから,t を実数として OD = tOP + (1-t) OC=t( イ +(1-t) OC② 四面体OABCにおいて, 2点P, Q をそれぞれ辺 AB, BC 上に AP:PB = 1:2, BQ:QC=1:2 となるようにとり、2直線AQ と CP の交点をDとする。 OD OA, OB, OC を用いて表そう 点Dは直線 AQ上にあるから, s を実数として イ ア の解答群 3 1 の解答群 難易度★★★ ◎/OB+/OC①0B+/OC② L/OB+OC に当てはまるものを、次の各解答群のうちから一つ ⒸOA+OB ⒸOA+OBOA+OB ① ② より OA + SOA+(1-s)(ア = t であり, 4点O, A, B, C は同一平面上にないから,s= エ キ OB + OC 3 イ )+(1-t) OC これより, 例えばx= 目標解答時間 である。 と求まり,yをxを用いて表すと, y = イ)+B(ア であり, 4点 0, A, B, C は同一平面上にないから, α = +yxOA のとき、y= x xt + タ チ 18分 ウ I である。 である。 A ③ OB +/OC t= SELECT 90 ③OA+/OB 次に、辺OA上に OR = x OA (0<x<1) を満たす点 R をとり, 平面 PQR と直線 OCの交点を Sとする。 (1) 辺OA上を点Rが動くと, 点Sもそれに応じて動く。 その様子を調べてみよう。 点 S は直線 OC 上にあるから,yを実数として, OS = yOC・・・ ③ と表される。 また、点Sは平面PQR 上にあるから, α, β,yを実数として OS = α OP + BOQ + y OR ④ と表される。 ただし,α+β+y=ク である。 ③,④より y OC = オ 力 ケコ y, β=サ 0 B と求まり, S y, Y = 2 C XC y

回答募集中 回答数: 0
数学 高校生

全部教えてほしいです!お願いします🙇‍♀️

30 A,B,Cの3組で50点満点のテストを行ったところ、各組のテストの得点は次の表のようになっ た。ただし、表の数値は正確な値であり, 四捨五入されていないものである。 人数 平均値 中央値 27.0 10.0 27.0 5.0 24.0 10.0 (1) 各組の得点を,0点以上5点未満, 5点以上10点未満・・・というように階級の幅を5点とするヒ ストグラムで表したところ、 それぞれ次の⑩~②のうちのいずれかになった。 このとき, A組のヒストグラムはア B組のヒストグラムはイである。 ア 組 A B C (人) 15 ) 10 5 難易度 ★★★ 20 30 30 30.0 25.0 25.0 05 10 15 20 25 30 35 40 45 50 イに当てはまるものを、次の①~②のうちから一つずつ選べ。 0 ① (人) 15 10 目標解答時間 5 05 10 15 20 25 30 35 40 45 50 以下, A組とB組を合わせた50人のデータを考える。 (2) この50人の得点の平均値はウェ 9分 点であり, 中央値は (人) 15 ) カ 10 5 SELECT SELECT 90 60 05 10 15 20 25 30 35 40 45 50 カ については, 当てはまるものを、次の⑩~③のうちから一つ選べ。 ① 27.0点より大きい 0 27.0点である 27.0点より小さい ③ 27.0点と同じか異なるか, 判定できない (3) 一般に,n個の値からなるデータ X1, x2, X3, ….', x の平均値xと分散s について,次の関係 式が成り立つ。 s² = ¹² (x₁² + x₂ ² + ··· + x^²³)−(x)² これを利用すると, A組の20人の得点を2乗したものの総和は キクケコ ×20, B組の30人の得 点を2乗したものの総和はサシス ×30 となる。 したがって, A組とB組を合わせた50人の得点の分散はセンとなる。 (配点10) 【公式・解法集 28 30 分析 データの

回答募集中 回答数: 0
数学 高校生

(2)の最後の問題で、答えが何故10になるのかが分かりません(´・ω・`)

47 難易度 目標解答時間 15分 SELECT 9060 花子さんの住んでいる町内で毎年行われているクリスマス会では,参加者全員にスナック菓子 一袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり、1年前のク マス会を知っている人に話を聞いた。 1年前は、参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類で売られて 3袋入りをa箱,7袋入りを6箱買うと,30人全員に1袋ずつ残さず配ることができたという。た a,b はともに0以上の整数とする。 このことから 3a+7b= アイ ...1 オ), カ が成り立ち, ①を満たすa, bの組(a, b) は, (a,b)=(ウエ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば, 3袋入りと7袋入りの箱をうまく組み合わせて買うこと スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。 参加者全員 袋ずつ残さず配ることができない場合について考えよう。 3袋入りをx, 7袋入りを箱買うとする。 ただし, x,yはともに0以上の整数とする。 (i)yが3の倍数のとき, y = 31 (10以上の整数)と表すと 3x+7y=ク (x+ケ 1) であり, 3x+7y と表される数は コ 以上の3の倍数すべてである。 (ii)yを3で割った余りが1のとき、y=3l+1 (Zは0以上の整数)と表すと (ただし, t + (x+ 1+ ス + サ 3x+7y= であり, 3x+7yと表される数は3で割った余りがソである整数のうち, すべてである。 233119 (yを3で割った余りが2のとき, (i), (ii) と同様に考えると, 3x+7y と表される数は3で た余りがチである整数のうち,ツテ 以上のものすべてである。 (i) ~ (i)より, 3x+7y (x, y はともに0以上の整数) と表されない自然数は全部でト個ある すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員 袋ずつ残さず配ることができない参加人数は全部でト |通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱5袋入りの セ タ 以上の 2種類が売られており, 中身のパッケージのデザインも異なっていたため、クリスマス会を げるため, 2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても、スナック菓 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 (配点 公式解法 7 する L と 0 [C] G

回答募集中 回答数: 0