学年

教科

質問の種類

数学 高校生

この問題のエオについて質問です。なぜ cosもsinも0になるのでしょうか?上で表記されているから、というのは分かるのですがなぜ1🟰...となるか分かりません。。 zの0は1という所から来てるのでしょうか、? 解説お願いします🙏

素数平面 22 複素数のn nn 例題 2 i を虚数単位とする。 と表すことができる。 両辺の絶対値と偏角を比較すると, +isin の右辺も極形式で表すと、③は,ア (cos イ 0+isin ウ 0) =cosエ (1) 方程式 = 1...... Aを解く。 zの極形式をz=r(cos0+isin0) とし, 方程式 r= カ0= kπ キ (k は整数) ...... (*) π コ を得る。 0≦02の範囲で (*) の0の値は, 0=ク π、 ケ サ 以上により, 方程式の解は、シ i,スセ -i である。 (2)方程式 28i®を解く。 zの極形式をz=r(cos0+isin0) とし、方程式®の 右辺も極形式で表すと,Bは, ツ , (cos夕 0+isinチ8)=ツ (cos +isin- π π テ ト と表すことができる。 両辺の絶対値と偏角を比較すると, (k+1) r=ナ 0 = (k は整数)...... (**) ヌ を得る。 0≦02の範囲で (**) の0の値は, TC 0 = π, ネ ハ ヒ フ ヒ ただし < π ハ 以上により, 方程式の解は, < +i. ホ +i, マミiである。 解答解説 (1)zの極形式をz=r(cos0+isin0) とすると, ドモアブルの定理により, z4=r* (cos40+isin40)A 方程式Aの右辺を極形式で表すと, 1=cos0+isin 0 A B よって, 方程式 A は次のようになる。 r4 (cos40+isin40)=cos0+isin0 A ......ア, イ ウ エ オ (答) ここで、両辺の絶対値と偏角を比較すると, =1,40=0+2k(kは整数) C 数学6 THE A 鉄則 (複素数)” は,極形式で表 してド・モアブルの定理 2” を考えるときは,まずz = a+bi を 極形式 (cos0+isin0 ) で表す。 本間は, 方程式A,Bの両辺を ともに極形式で表すことがポイントだ そのあと,ド・モアブルの定理を使う。 ドモアブルの定理 z=cos0+isin のとき z"=cosn0+isinn は整数

解決済み 回答数: 2
数学 高校生

α‬が上の式でマイナス着いているのに両辺をα‬で割ってることが分からないのと、α‬で割ったとしてもマイナスが右辺に残ってKiの符号がそのままになっているのが分からないです!!教えてください!!

例題 C2.35 直線, 円の接線の方程式 同 (1) 複素数平面上の異なる2点α βを通る直線の方程式は, (a-z-(a-β)z+ap-ap=0であることを証明せよ。 **** (2) 複素数平面上において, 原点を中心として、半径の円周上の点 A(α) における接線の方程式を求めよ。 p 考え方 (1) A(a), B(β) を通る直線上の任意の点P(z)について.. 3点A, B, P が同一直線上にある wwwwww z-a 実数 1画素 a z-a z-a ⇔ B-a B-a (2) 接線上の任意の点をP(z) とすると, OA-AP または z=α より OR arg π ga = または z-α=0 0-a z-a -は純虚数または 0 A(a) P(z) a 2-a za ⇔ a a && $ 1 si 解答 (1) 複素数 α βが表す点をそれぞれ A, B とする. 1960 また, 2点A,Bを通る直線上の任意の複素数zが表 す点をPとすると, 3点 A, B, Pが同一直線上にある ための条件は, (-)-si za=k(β-α) (hは実数 α =β より 両辺を β-α で割って, B-a は実数より 018 za z-a z-a (0 B-a B-a B-a 両辺に (β-α) (B-α) を掛けて, = +8)(za)(Ba)=(za)(β-α) (Ba)z(Ba)a=(β-a)z-(β-α)a (a-Bz-(α-β)x+aβ-aβ=0 その感 (2)点Aにおける接線を l とする。 また, l 上の任意の複素数 z が表す点をPとする. l P (z) A(a) r OA⊥AP または z=α より Pは原点Oを点Aのまわりに 今だけ回転して点Aからの距 離を倍 (≧0) した点である. (a) P(z) 059+isin 9) zが実数+isinnf 1- ← z=z ブルの 画 20007 ここからすぐに, za は純虚数また a P(z) は0としてもよい.

解決済み 回答数: 1
数学 高校生

(3)でどうして赤字のように言えるのか分かりません。 解説お願いします🙏

関数 f(x) = 4' + α・2 +2 +11a+3 について (1) t = 2" とおくとき, tの値のとり得る範囲は t> ア である。 また,y=f(x)として,yをもの式で表すと,y=e+イ at+ウエα+オとなる。 「カキ (2)yの最小値が-17 となるとき, α の値は a = である。 (3)xの方程式f(x)=0が異なる2つの負の解をもつとき、定数αの値の範囲を求めると, 解答 Key 1 (1) すべての実数xに対して2>0であるから また t>0 y=(2x)+α・22.2x + 11a + 3 = L + 4at + 11a + 3 (2)g(t)=t+ 4at + 11a +3 とおく。 g(t) = (t+2a)-4² +11a +3 であるから 「ケコ <a< スセ サシ x=(22)x = 22x = =(2x)2 ( t = 0 を範囲に含まないた y (i) -2a≦0 すなわち a≧0 のとき y=g(t) のグラフは右の図のようになり,g (t) は最小値をもたない。 最小値をもたない。 f= 11a+3 ゆえに、最小値が-17となることはない。 -2a argol O (ii) 2a>0 すなわち α < 0 のとき t y = g(t) のグラフは右の図のようになり,g(t)は t = -2α のとき最小値 4α+11a +3をとる。 43 最小値が-17 のとき -4α² + 11a+3= -17 Corgols 2a01 (4a+5)(a-4) = 0 となり 10 t Egols Solt sof (R) 4a²-11a-20 = 0 5 a < 0 より a=― 4 (2.8)orzol (3) x < 0 のとき t = 2x < 2°=1 y 1 04a²+11a+3 xの方程式 f(x) =0が異なる2つの負の解をもつとき, tの2次方 程式 g(t) = 0 は区間 0<t< 1 に異なる2つの実数解をもつ。 この とき,y=g(t)のグラフは次の図のような放物線になる。 よって (i) 放物線y=g(t) の頂点のy座標が負で あるから -4a²+11a+3<0 (ii) 放物線y=g(t) の軸はt= -2α より 0<-2a <1 43 asola sa (0100.01)0 60102.0 D (S) 方程式 g(t) = 0 の判別 D>0 としてもよい。 g(1) ae. (iii) g(0)=11a+3>0 g(0) -2a O (iv) g(1) = 15a +4 > 0 1 t (i)より (a-3)(4a+1) > 0 ゆえに a 1 , 3<alog 1 (ii)より <a<0 (iv) SP-D 2 (ii) 3 (Ⅲ) より a>- 11 フより、 002(i) 1 3 4 0 2 3 a -0.2727··· 11 (iv)より>-- 3 15 11 15 4 (i)~ (iv) より, 求めるαの値の範囲は のカギ! 4 - 15 <a<-1/4 15 -0.2666...

解決済み 回答数: 1
数学 高校生

この問題の(1)なんですけど、答えはπ以下じゃないといけませんか?

52 基本 例題 105 線分のなす角, 平行・垂直 0000 α=-1,β=2i, y=a-iとし, 複素数平面上で3点をA(α), B(B), C(y) と する。 ただし, αは実数の定数とする。 (1) α=- 2 3 のとき,∠BACの大きさを求めよ。 (2)3点 A,B,Cが一直線上にあるようにαの値を定めよ。 (3)2 直線 AB,AC が垂直であるようにαの値を定めよ。 CHART & SOLUTION p.451 基本事項 3 線分のなす角、平行・垂直 - の値に着目 B-a 半分の (1) ∠BAC= arg (2) の円 r-a (3) B-a 虚数 (∠BAC= 解答 Cargo から を計算し、極形式で表す。 β-α Y - が実数 (∠BAC=0 または β-a y-a = (1) 2-8- B-a 3 i)-(-1) 2i-(-1) 131 i 1 (1-3) (1-2i) 1+2i 3 (1+2i)(1-2i) 分母の実数化 (予) (カフェリー(cos()+isin 3 COS 40+30 =/(-1-1)= 3 したがって <BAC=|-2|1=2014/10 ∠BAC 3 3 例 π F ZBAC=arg- Y-a B-a (2) B-a 2i-(-1) y-a_(a-i)-(-1)_(a+1)-i {(a+1)-i}(1-2i)_(a-1)-(2a+3)i 1+2i 通り (1+2i)(1-2i) ①20:90 5 3点 A, B, C が一直線上にあるための条件は, ①が実数 zx+yi (x, yは実 となることであるから 2a+3=0 使用する 3 において よって a=- 2 y=0 zは実数 数となることであるから α-1=0 かつ 2a+3≠0 よって _3) 2直線AB, ACが垂直であるための条件は,① が純虚 x=0 かつ y≠0 ⇔は純虚数 a=1 RACTICE 105 ② 2α+30 を満たす。 ■) 複素数平面上の3点A(-1+2i), B(2+i), C(1-2i) に対し, ∠BACの大きさ 求めよ。 ) α=2+i

解決済み 回答数: 1