学年

教科

質問の種類

数学 高校生

この下の例題で、各円の方程式を引いたらそれぞれの交点を通るのは分かるのですが、「ここで」の後がいまいちピンと来ません。丁寧に解説お願いしたいです

90 第3章 図形と方程式 コメント 結果的にいえば、 2つの円の方程式を x² + y²-5=0, x²+y²−6x+2y+5=0__····· とすると円の交点を通る直線は①②であっさり求められるわけです。 最初聞いたときは, 「えっ、なんで?」 と思ったものですが,すでに説明した ように, 「①②」 と 「①-②, ②」の同値関係を考えることで説明できるわ けですね. 「この「同値」の考え方の威力を感じていただくために,次のような問題を紹 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ るので、 とを示せ . 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね. ところが上回 図形と方程式の考え方を用いれば、 ほとんど計算をする ことなく証明できてしまうのです. まず3つの円を一般形 (x2+y^+lx+my+n=0の 形)で表した方程式を ① ② ③とします. すると, ①と②の2つの交点を通 る直線は「①-②」,②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. 「ここで 一致する 2-3813 ①ONOS 1359 1-3=(1-2)+(2-3) 1-= del なのですから, ①②, ②-③」 と 「①-③, ② - ③」は同値です.つまり、 それぞれの直線の交点は一致するわけですから、3直線は1点で交わります。 し

回答募集中 回答数: 0
数学 高校生

29番の(1)で必要十分条件を求める問題で、どちらが必要条件でどちらが十分条件か分からなくなってしまいました。考え方を教えて頂きたいです。

28 よって ここで ゆえに −(n=k+1}{n+k+1)+(n−k)(n+k) n→∞0 =-2k²+(2n²+2n+1) f(n)=-4 f(x)=x(2k² +2n² +2n+1) k²=0+22k², 1=2n+1 TA³5 k=1 −42 k²+(2n²+2n+1) (2n+1) k=1 − n(n+1)(2n+1)+(2n²+2n+1)(2n+1) lim 72-00 n³ (2) f(n) -1/(1+1/2)(2+1/2)+(2+1/2)(2+1)} =--²--1-2+2-2= 8 3 3 別解n≦x≦k, k≦x≦n と k<x<kに分けて,直線 y軸に平行な直線につ x=i (-n≦i≦n) 上にある格子点の数を求める。 さて格子点を数える。 = -n≦i≦k のとき, 格子点の数は k=-n 1+3++{2(n−k+1)−1}=(n−k+1)² = (+_____________ k<i<kのとき, 直線 x = i の本数は ←-k+1≦isk-1 各直線上の格子点の数は よって k-1-(−k+1)+1=2k-1 = I=gb S=b 2(n-k+1)-1=2n-2k+1 Nk=2(n-k+1)+(2n-2k+1)(2k-1) =-2k²+(2n²+2n+1) 総合を複素数とする。 自然数nに対し、2” の実部と虚部をそれぞれxとyとして、2つの数列 29 {Xn},{yn}を考える。 つまり, z=xn+iy" (iは虚数単位) を満たしている。 (1) 複素数zが正の実数と実数0を用いて z=r (cos0+isine) の形で与えられたとき、 数列{x},{ym} がともに0に収束するための必要十分条件を求めよ。 1+√3 10 = n(n+1)(2n+1) のとき、無限級数Σx とΣy はともに収束し, それぞれの和は n=1 71=1 x=2y=イロである。 (1) z=r (cos0+isin0) [r>0] のとき HINT (1) x²+y² = (r")2 となることに注目し, まず必要条件を求める。 (2) z を等比数列の和の公式を利用した式で表してみる。 ORAN z"=r" (cosnotisinn()=r"cosn0 +ir” sinne Xn=r" cosnd, yn=r"sinno よって ゆえに x2+yn²=(r")' (cos2nd+sin'nb)=(x2)" limxn=limyn=0のとき lim(x²+ym²)=0 〔類 慶応大] 本冊 例題 13,102 ←ド・モアブルの定理。 ←=xn+iy 0sr²<1 よって に0<r<1のとき 1-400 0<r<1より, lim|rl"=0であるから ゆえに 0≦|x|=||"|cos nolsrp. よって 0≦ly|=|||sinner| また 以上から、求める必要十分条件は +③iのとき 10 lim|x|=lim|y|= 0 71-00 ゆえに 1110 Z ここで1-2 lim xnn-000 ZR= ここで k=1 z(1-2)= 1-² よって 1- 1+√3 i 10 1+√3 i 10 k=1 84 3+5√3 i 42 (1+√3i)(9+√3 i) (9-√3i)(9+√3 i) 6+10√3i_3+5√3i 2x= k=1 1-2 (1-(xn+iyn)) 1+√3 i 9-√3i 11-0 0721 0<r<1 n=1] -(1-Xn-iyn) 2R= = 1/2 (3(1-xn) +5√3 yn+(5√/3 (1–xn)—3yn}i) z*= (xn+iyn)= xx+iZyn k=1 3(1-x₂)+5√√3 yn 42 ΣXn² n=1 42 5√3 (1-xn)-3yn 42 0</1/3 <1であるから, (1) の結果より limxn=limyn = 0 „=lim 11-00 2 k=1 2 = = = = ( 1²/2 + √²³_i) = = = (cos / 1 + isin) Σyn=lim- 11-0 ←Sa<1のとき a²19 a=1のとき、 α>1のとき、18 42 ←xel Saxolxel から、 xel 0のとき 初項z. 公比zの等比 数列の初項から第 環 までの和 12-00 3 (1-x)+5√3ym_3_71 42 5√3 (1-xn)-3yn_15√/3 42 -419 ←分母の実数化。 42 14 ← 22 のもう1つの表現。 ←実部、虚部をそれぞれ 比較。 (12) 結果を利用 総合 N=1 £ =lim ży

回答募集中 回答数: 0
数学 高校生

1番よくわからないです

目の方程式を 基本84 =-4x+5 ] を満たす の例 [2] を満たす 円の例 半径 2 (t,s) が直線 +5 上にあるか -4t+5 ⇔A=±B がx軸の上側 がx軸の下側 OST x2+y2+bx+my+n=0の表す図形 日本 例題 87 (1) 方程式x2+y2+6x-8y+9= 0 はどのような図形を表すか。 方程式 を求めよ。 x2+y2+2px+3py+13 = 0 が円を表すとき、 定数の値の範囲 p.138 基本事項 1 CHART & SOLUTION arty'+lx+my+n=0の表す図形x, yについて平方完成する (²+2+2 x + ( ₂ ) } + {y² + 2. 2 y + (7) } − ( 2 ) + (2) -- ((x+ 2) + (x + 2)² = - 1²+ m²-4n 4 14+ m²-4n>0 DEZ, 40(-21/1, の形に変形。 m 中心(1/21)半径 (1) ゆえに (x+3)²+(y−4)²=16 よって, 中心(-3,4), 半径4の円を表す。 (2) (x²+2px+p²) よって したがって (x2+6x+9)+(y²-8y+16)=9+16-9 x+p²) + {y² + 3py + ( ²₁ p)²}=p² + ( 2 P) ² - 13 121= (x+p)² + (y + 3 p)² = 13²-13 ゆえに 4 13 この方程式が円を表すための条件は p²-4>0 ゆえに in として, √1²+ m²-An 2 p<-2,2<p p²-13>0 (p+2)(p-2)>0 の円を表す。 HINFORMATION x2+y2+bx+my+n=0の表す図形 方程式x2+y2+bx+my+n=0 が円を表さない場合もある。 例1 方程式x2+y^2+6x-8y+25=0 の表す図形 変形すると (x+3)+(y-4)²0 ←右辺が 0 両辺にx,yの係数の半 分の2乗をそれぞれ加 える。 ← x,yについて それぞ れ平方完成する。 実数の性質 A,Bが実数のとき A2+B2≧0 143 これを満たす実数x, y は, x= -3, y=4 のみである。 よって、方程式が表す図形は 点(-3, 4) 例2 方程式x2+y^+6x-8y+30=0 の表す図形 変形すると (x+3)+(y-4)²=-5|←右辺が負 これを満たす実数x, y は存在しない。 よって, 方程式が表す図形はない。 等号は A=B=0 のときに限り成立。 PRACTICE 87② 10 方程式x^2+y2+5x-3y+6=0 はどのような図形を表すか。 1=2-1 (2) 求める 方程式x2+y2+6px-2py+28p+6=0 が円を表すとき,定数の値の範囲を

回答募集中 回答数: 0