学年

教科

質問の種類

数学 高校生

⑶で最後のpの倍数の個数を求める式がよくわかりません。

例題260 互いに素な自然数の個数 を自然数とする.m≦nでmとnが互いに素である自然数mの個数 をf(n) とするとき、 次の問いに答えよ. (1) f (15) を求めよ. (2) f (pg) を求めよ.ただし, p, g は異なる素数とする. (3) f(p) を求めよ.ただし、pは素数, kは自然数とする. (名古屋大・改) 考え方 (1) 「m≦nでmとnが互いに素である自然数mの個数をf(n) とする」とはどう いうことかを(1) の f (15) をもとにして考えてみる. f(15) はn=15 の場合であるから, ☆「m≦15 でmと15が互いに素である自然数mの個数は (15) となる。 つまり, (1)を言い換えると次のようになる. 合 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の 自然数は, 3,6,9,12, 15,510の7個である. よって, 15 と互いに素な自然数の個数は, f(15)=15-7=8 もつやっ魂 (2) gは異なる素数であるから、 pg と互いに素でな い自然数, すなわち, pの倍数またはgの倍数であり, 以下の自然数は, ①の倍数 10 2.⑩..... (q-1)0, HTA 教えた 「15 以下の自然数で15と互いに素である自然数はいくつあるか」 (2)(1)では,15=3・5 であった.(2)ではggは互いに素より(1)と同様にして 考えてみる. 個 ⑨の倍数 1⑨ 2.⑦ .…... (p-1) @カ@のか個 が互いに 3Mの数) ⑩9の倍数 1 SCAND り (q+p-1) 1 よって, bg と互いに素な自然数の個数は 1.2.3.....pa f(pq)=pa(g+p-1) Focus の 個 P9以下の自然数の **** = pg-p-g+1=(-1)(g-1) (3) p, kは自然数であるから, が以下の自然数は CHA (1.2.3.....PR) 個ある. pは素数であるから,以下の自然数の倍数 は全部で, pp=1個) 123 したがって, f(p")=pk-pk-1 練習 260 (g)とする. *** 「互いに素である」の 否定 「互いに素でな い」 を考える. 5 (1) を一般的に考える. p=3,g=5 としてみ ると見通しがよくなる. pg÷p=g(個) pg÷g=p(個) (1) f(77) を求めよ. (2) f (pg) = 24 となる p, g の組をすべて求め上 pg 以下の自然数 の倍数 STY 互いに素である自然数の個数は、補集合の考えを利用せよ ☆互いに素でない(1以外に共通の縞ある)もの数える 9の倍数 P9の倍数 (p.185 例題 94 参照) f(n) をオイラー関数 という. (p.538 Column 参照) ががが(-1) 例題260 の f (n) について次の問いに答えよ. ただし, p, g は異なる素数 改) 12 女 (c た C

回答募集中 回答数: 0
数学 高校生

この問題文から図をイメージすることができません。わかりやすく解説して欲しいです🙏

-2 横羽 Think 例題 245 体積(2) **** 底面の半径 a, 高さ 2a の直円柱がある。底面の1つの直径を含み,底 面と 45°の傾きをなす平面 α でこの直円柱を2つの部分に分けるとき,底 面と平面α とにはさまれた部分の体積を求めよ. 解答 考え方 この立体は回転体ではないから, x 軸を決め、 これに垂直な切断面の面積S(x) を求め, 積分する. 底面の切り口の直径をx軸とし, 円の中心を原点とする = x軸上の座標xの点において、 x軸に垂直な平面で求める立体 を切断すると,この切り口は、 直角をはさむ辺が, S を求め √a²-x² の直角二等辺三角形である. その面積S(x) は, | Focus 2 S(x)=(√²-x) = (a²-x²) よって, 求める体積Vは, a 1613HTOHET #912 45% √a²-x² まれた図 45° a ax 2) 80 1x1²7 注》x軸のとり方は、右の図の(1)(2)(1 ようにすることもできるが,どちら の場合も、切り口が相似な形でない から, S(x) が積分しやすい関数に はならない. (1) は, S(x)=2x√²xとなり、 これは数学ⅢIで学習する内容である. a 2 面積 463 Ax 3つの部分に分 v=f_s(x)dx="S" (a-x)dxが夢しいとき(-a)の S²(a²-x²) dx = [a²x - 3² x ²] = (S(x) 0 x x軸のとり方に注意 (下の注〉を参照) ま 三平方の定理を利用 (04 desem 偶関数の定積分 ²x+$²²₂(a²-x²)dx <とする。=2f'(ax)dx ECで掴まれた図形の面 CTICE 軸の決め方は切断面の面積S(x) が積分しやすい関数になるよ つまり、切断面が相似形になるように決める St 2) (大) XA x 4.7. tit x=曲 (I) 18*** whack is. S(x) 10 第 7 章

回答募集中 回答数: 0
数学 高校生

a+2√2=0ならば、a=0かつb=0でないと仮定するのはダメなのですか? 解説では、b≠0になってます。

例題106 背理法 (2) ことを用いてもよい。 α, b が有理数のとき、次の問いに答えよ、ただし√2が無理数である。 考え方 B44 (1)a+b2 = 0 ならば, a = 0 かつ 6=0 であることを背理法を用い て証明せよ. (2) α (2+√2)+b(1-√2)=5+4√2 を満たす α, b の値を求めよ. Focus a+b√2=0 より,√2= (1) √2が無理数であるという条件を利用できるよう, まず b≠0 と仮定する。 (2) (1) の結果を利用する. (1) 6=0 と仮定する. √2=-² /6 b ここで,a,b は有理数より も有理数となる が、このことは√2が無理数であることに矛盾する したがって, b=0 である. これをa+b√2=0 に代入して, よって, a,bが有理数のとき, a+b√2=0 ならば, a = 0 かつ 6=0 である. (2) α(2+√2)+b(1-√2)=5+4√2 2a+a√2+b-b√2-5-4√2=0 a=0 (2a+b-5)+(a-b-4)√2=0 US a b が有理数より, 2a+6-5, a-b-4 も有理数 となる. したがって, (1)より, よって, これを解いて, [2a+b=5=0 la-b-4=0 3 命題と証明 203 α=3. b=-1 **** tout "ATTT TEATALI この時点では「b=0」で あることしか導かれて いないので、ここから 「b=0」 を用いて 「a=0」 を導く. 第3章 √2について整理する. 2a+b-5, a-b-4 がともに有理数であ ることを必ず確認す る. 2824 〔1〕 Max M

未解決 回答数: 0
数学 高校生

⑹で図形の対象性より外接球と内接球の中心が一致すると書いてありますが、 図形の対象性とはどういうことですか?

262 第4章 図形と計量 Think 例題 137 Sing= 正四面体の種々の量 ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を 1辺の長さがα の正四面体OABC で, 辺BCの中点をMとして、 Hとする. 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] OH OM 0 1002000010 B A 正四面体の内接球の半径 001 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ ania. の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 径になる. CODE FOT つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に、分割してみる. 正四面体の外接球の半径 外接球とは 4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する . 外接球の半径は OIになることを利用する. 解答 ∠OMA を含む △OAM に着目すると, on Jend A √√3 OM=AM=- 2 3507-03 また, 対称性より, 点Hは△ABC の重心である。 cos A= a 0 (2) sin0=√1-cos20 3 △OMH において OH = OMsin O √3 2 正四面体は左の図のように回転させても同じような立 体の状況になる. このように図形や立体が対称性をもつ場合,その性質 B を利用して考えるとよい。 (1) 点Hは線分 AM を 2:1に内分 する. ここで,(2) OHの長さを A H 求めるから, 辺 OH を含む △OMH B において, >(2) OH の長さ (4) 正四面体の体積V (6) 正四面体の外接球の半径R -ax THOSEBEN HM _1 OM AM == 3 2√2 3 2√2-√6 3 =- a 0-0000-001 802+024x 8\084-04-2A 0 0 H 1 /3 2 €OC LOCA +06) M AM M **** C -a=AM A B a 160° 20 B M 重心については p.426 参照 sin'0+cos'0=1 を |利用 A BET

回答募集中 回答数: 0
数学 高校生

高校数学AFOCUSGoldの328ページの問題です 100円硬貨が4枚, 50円硬貨が3枚、10円硬貨が2枚 5円硬貨が2枚。 1円硬貨が2枚あるとき、次の問いに答えよ。ただし、「支払い」とは、使わない硬貨があってもよいものとし、金額が1円以上の場合とする。 (1) 1... 続きを読む

4 100 円硬貨が4枚, 50円硬貨が3枚10円硬貨が2枚、5円硬貨が2枚, 1円硬貨が2枚あ るとき,次の問いに答えよ.ただし, 「支払い」とは、使わない硬貨があってもよいものと し、金額が1円以上の場合とする. (1) 15, 10円硬貨を使って支払える金額は何通りあるか. (2) 支払える金額は何通りあるか. <考え方> (1) 「10円硬貨1枚」と「5円硬貨2枚」は同じ金額「10円」を表すことに着目して、 全部で 「5円硬貨6枚 1円硬貨2枚」として考える. (21)と同様に,「50円硬貨 11枚5円硬貨6枚, 1円硬貨2枚」として考える. NOAA T (1) 「10円硬貨1枚」と「5円硬貨2枚」のとき, 同じ金額 「10円」を表すので、 「10円硬貨2枚」を「5円硬貨4 枚」と考える. 5円硬貨6枚の使い方は、 0~6枚の7通り 1円硬貨2枚の使い方は、 0~2枚の3通り より。 7×3=21 (通り) よって, 「支払い」は1円以上より, 求める総数は, 21-1=20 (通り) (2) (1)と同様に, 「100円硬貨4枚」 を 「50円硬貨8枚」と 考えると,あわせて11枚の50円硬貨の使い方は, 0~11 枚の 12通り よって, 12×7×3-1=251(通り) もとの5円硬貨2枚と10円 硬貨を5円硬貨とした4枚の 計6枚 「0円」の場合を引く、 5円、10円硬貨をすべ 1円 て使っても50円にならない、 | 「0円」の場合を引く、

回答募集中 回答数: 0
数学 高校生

(2)についてです。 Sinθ<0、2Sinθ+1が>0の時 Sinθ>0、2Sinθ+1<0の時 の2パターンに分けて場合分けしないのは何故ですか?😭

252 第4章 三角関数 Check 例題 137 三角方程式・不等式(②2) 0≦0<2πのとき,次の方程式・不等式を解け. (1) 2sin-cos0-1=0 考え方 まず, 三角関数の種類を統一する. Focus 解答 (1) sin=1-cos' を与えられた方程式に代入して, 2 (1-cos20) - cos0-1=0 2 cos²0+cos 0-1=0 つまり, sin²+cos20=1 などを用いて, sin0 だけ, cos0だけなどの形にする。 また, coso, sine のとり得る値の範囲に注意する. (cos0+1)(2cos0-1)=0 11 ここで, 0≦0<2πより, -1≤cos 0≤1 1 よって、 cos0=-1, ≤0<2π T, cos0=-1, を解いて, (2) 2cos20-sin0-2>0 5 3 (2) cos20=1-sin' を与えられた不等式に代入して, 2(1-sin²0)-sin0-2>0 p 0=7, ₁ 9= り、 2 sin²0+sin 0 <0 sin0(2sin0+1) < 0 ここで, 0≦0<2πより, よって, <sin0 <0 0≦02 で, 2 -1sin0≦1 <sin0 <0 を解いて, T <0<,<0<2n <2π 種類の統一 sin ²0+coste=1 costの式に統一する cose のとり得る値の 範囲を確認しておく VAI -1 T 三角方程式・不等式 注〉例題 137 では,(1) cos0=t (2) sin0=t とおいて考えてもよい。 co/cr/ 5 2 T 3 sin の式に統一する . π ** sin0のとり得る値の 範囲を確認しておく. YA 7 6 RYO H 1 A011 x 2 π 3 11 6 E π Che 例 1 1x 見 「考え 解

回答募集中 回答数: 0
数学 高校生

⑵ですが、僕のように考えてはアウトですか? 数1A確率です

388 第7章 確率 Check 例題218 同じものを含む順列と確率 tan T, 0, H, 0, K, U, A, 0, B, A の 10 文字から何文字か取り出し、 横1列に並べるとき、次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つのOも隣り合わない確率 (2) 10文字の中から6文字を1列に並べるとき,どの2つのOも隣り合 わない確率 考え方 01, O2,03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ) 解答 (1) T, O1, H, O2, K, U, A1, 03, B, A2 の 10個を 10! 通り 1列に並べる並べ方は, Focus どの2つのも隣り合わない並べ方は,まず0を除 文字を並べ、さらに7文字の間と両端の8箇所 から3箇所を選んで 01, O2, 0g を並べるときで, 7!×P3 (通り) よって、どの2つの0も隣り合わない確率は, 10! (2) 10文字の中から6文字を1列に並べる並べ方は, 10 P6通り 6文字のうち0が3つのとき (i) (i) 7!×gP3_7!×8・7・6 7 10.9.8×7! 15 ( 7 P3×4P3 (通り) 6文字のうち0が2つのとき 7P4X3C2X5P2 (₁) 6文字のうち0が1つのとき 7P5×3C1×6P1 (通り) (iv) 6文字のうち0が含まれないとき 76通り よって, (i)~(iv) より 求める確率は, *** 7P3×4P3+7P4×3C2×5P2+7P5×3C₁×6P₁+7P6 10P6 7・6・5・4・3・42_7 10.9.8.7.6.5 10 計算しない . 確率なので,あとで 約分する. 0000 ^^^^^^^^ 7! X8P3 約分しやすく工夫す る. ^^^^ 7P3X4P3 0000 ^^^^^ 7P4 X 3C2X5P2 m 01, O2, 03 のうち、 どのOを選ぶか . 分子は, 7・6・5・4・3・2 +7-6-5-4-3.5-4 +7.6.5.4.3.3.6 +7.6.5.4.3.2 =7.6.5.4.3 X2+20+18+2) 確率を考えるときは、 同じものも区別する (同様の確からしさ)

回答募集中 回答数: 0