学年

教科

質問の種類

数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

解決済み 回答数: 1
数学 高校生

1の場合だけ,判別式を使える理由を教えてください

重要 例題 104 物 放物線y=x2+αと円x2+y^2=9について,次のものを求めよ。 (1)この放物線と円が接するとき,定数αの値 (2) 異なる4個の交点をもつような定数αの値の範囲 の 0000 指針 放物線と円の共有点についても,これまで学習した方針 共有点 実数解 接点⇔重解 で考えればよい。 解答 x2=y-a これをx2+y2=9に代入して よって y2+y-a-9=0 ...... ここで,x2+y2=9から [1] 放物線と円が2点 で接する場合 37 この問題では,xを消去して, yの2次方程式(y-a)+y2=9の 実数解 重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が 接する とは,円と放物線が共通の接線をも つことである。この問題では, 右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし, (1) の結果も利用して条件を満たす。 αの値の範囲を見極める。 (1)y=x2+α から 1点で 接する 2点で接する 消去すると、yの (y-a)+y2=9+2次方程式が導かれる。 ① x²=9-y²≥000 -3≤y≤3 ****** [1] a=- 4 [2] a=-3 a=3 y 2次方程式 ①②の 範囲にある重解をもつ。 よって, ① の判別式を Dとすると D=0 3 3 3- -3 13 O 0 x -3 13 x -3 0 -3 D=12-4.1 (-a-9) 37 =4a+37 であるから =37 a=- このとき、①の解は y=- [2] 放物線と円が1点で接する場合 以上から 図から,点 (0, 3), (0, -3) で接する場合 4a+37=0 すなわち -12となり、②を満たす。 2次方程式 py2+gy+r=0 解け 37 4

解決済み 回答数: 1
数学 高校生

(3) x,yをzを用いて表す、というところで、x=z、y=-zになるのがなぜかわかりません。①②の式からどのような変形をして、x,yをそれぞれzを用いて表すのですか?

対して ka +tb>1 が成り立つような実数kの値の範囲を求めよ。 【18 甲南大] 留内積の計算 数式と同じようにできる。 なお |f=da 1soo|2|||=2:1盟 3√3 2 |k+t6|>1 の両辺はともに正であるから,k+16>12 である。 ①から ka+2kta 6+t|b|²>1² ①と同値 よって f2+3√3kt+9k-1>0 2 ②がすべての実数について成り立つための必要十分条件は,tの2次方程式 f2+3√3kt+9k-1=0 の判別式をDとすると ここで D=(3√3k)2-4(9k2-1)=-9k²+4 D<0 L ベクト 求めると、 347 241 ならば、 2 2 D<0 から k<- <k 答 3'3 ■Check■■ 47 (1)2つのベクトル d = (1, 2), = (k, 4) に対して, a 2-a が 平行であるとき,kの値を求めよ。 また, 3d-b と a+ò が垂直であるとき, kの値を求めよ。 (2) ベクトル, が |a+6=11, |-6|=7 を満たすとき, 内積を求 めよ。 (3)空間の2つのベクトル a = (2,3, 1) = (1,2,3)の両方に垂直で大 きさが1のベクトルを求めよ。 348 1 積 OA ように (1) *349 周」 よ *344 (1)||=5,|6|=3,|a-26|=7 を満たすとする。このとき, 内積を求めよ。また, tが実数全体を動くとき, a +坊の最小値と, [類 15 関西学院大 ] そのときのtの値を求めよ。 (2)ベクトル,,こが+6+2=0,|4|=|6|=||=2を満たすとき,内積 の値と,とものなす角を求めよ。 98 ■ XI ベクトル [17 東京都市大] 350 る

解決済み 回答数: 1