学年

教科

質問の種類

数学 高校生

〜を引いたところの変形の仕方がわかりません。

基本 例題 20 極限の条件から数列の係数決定など ①①①① (1) 数列 {a} (n=1, 2, 3, ...) が lim (3n-1)α=-6 を満たすとき, ■である。 lim nan 8 7118 [類 千葉工大] (2) lim(√2+an+2-√n²-n) =5であるとき、 定数 αの値を求めよ。 /p.34 基本事項 2 基本 18 41 指針 (1)条件 lim (3n-1)a=-6を活かすために,na"=3n-1)lan× n と変形。 →∞ 13n- 数列{37-1 は収束するから,次の極限値の性質が利用できる。 liman=a, limbn=β⇒limanbn=aβ (a,βは定数) 818 818 n18 (2) まず, 左辺の極限をαで表す。 その際の方針は p.38 基本例題18(3) と同様。 (1) nan=(3n-1)anx n であり 3n-1 lim(3n-1)an=-6, →∞ lim n→∞ 3n-1 n = =lim n1α 1 3- n n limnan=lim(3n-1)an×lim よって n→∞ n→∞ n→∞ 3n-1 13 nan を収束することが わかっている数列の積で 表す。 (税込) 極限値の性質を利用。 =(-6)=-2 3 であるから (2) lim(√2+an+2-√n-n) n→∞ =lim n→∞ (n²+an+2)−(n²−n)) =m=mil √√n²+an+2+√√n²-n ((a+1)n+2 mi =lim →∞ =lim- n18 √netan+2+√n²-n (a+1)+- 2 n 12 n ==a+1 2 (税込) 分母分子に √n²+an+2+√n-n を掛け,分子を有理化。 1分母分子をnで割る。 子をnで割る。 'n> 0 であるから n=√ a 2 n 1+ + + 1 n² よって, 条件から a+1 =5 2 Ma=9 したがって {a.l. αの方程式を解く。

未解決 回答数: 1
数学 高校生

この、右のページでやっていることが、なぜ成り立つかわかりません

370 340 第9章 整数の性質 不定方程式 y 次のような方程式を考えてみます. -2231x+409y=1 2231x+409y=1 ...... (*) これを満たす実数x、yの組は無数に存在しま す.実際,この式を 1 409 この直線上すべての 点(x,y) が解となる 1 2231 1 y=-- x+· 2231 409 409 -x と変形すると,これはry 平面上の直線となるの で,この直線上のすべての点(x,y) がこの方程式の解となるわけです. 一般に,文字の数が等号の数より多い方程式は解を定めることができません。 このような方程式のことを不定方程式と呼びます.特に,(*)のようにxy の一次式で表されるような不定方程式を一次不定方程式と呼びます. さて,ここで考えたいのは次のことです. 不定方程式 2231x+409y=1 ......(*) は りがともに整数であるような解(整数解)を持つだろうか? これは意外に難しい問題です。 実数の範囲では無数に解を持ったとしても 整数の範囲では解を持つかどうかすらアヤシイのです. 結論から先に言えば (*)の整数解は存在する のです.では,それをどうやって示せばいいのでしょう. 妖怪が存在すること を示す最もストレートな方法は,妖怪を捕まえて連れてくることです. それと 同じで,整数解の存在を示す一番の方法は、 具体的に整数解を作ってみせるこ とです.ここで役立つのが,先ほど扱ったユークリッドの互除法なのです. (*)のxyの係数 2231 と 409 に注目し, これをユークリッドの互除法の 要領で「割り算」 していきましょう. すると, 3段階目で余りに1が現れます. 2231=409×5+186 ......① 409=186×2+37 186=37×5+1 1が現れた! ...... 2 余りに1が現れたということは, 2つの数の最大公約数は 1 つまり2数は 互いに素であるということです. これはとても重要なポイントなので、頭に入 ておいてください 341 ことは,これらの式を逆にたどるよ にして1を元の2数を用いて表す」 ことです。 具体的には,次のような作 になります。 ⑦→ ④→ ← 1=186-37 × 5 ③ より =409×(-5)+186 × 11 186-409-186×2)×5②より37=409-186×2 =409×(-5)+(2231-409×5)×11-0) =2231×11+409 × (-60) - 186-231-409×5 まず、③により1が 「186と37」 を用いて表され(ア), そこに②を使うと 「409 と 186」 を用いて表され(イ), さらに①を使うと1が 「2231409 」 を用いて表されます(ウ) ウの式は,まさに(*)の整数解 (の1つ)が であることを教えてくれます。 x=11,y=-60 さて、先ほど注意したように,このようなことができたのは, そもそも の係数 2231 409 の最大公約数が 1 つまり互いに素であったからです。 つまり、一般に次のことが成り立つことがわかるのです. 不定方程式の整数解 bが互いに素な整数であるとき 1次不定方程式 ax+by=1 は整数解を持つ ユークリッドの互除法を用いれば, 一次不定方程式の整数解を具体的に作り 出すことができます.ただし,このやり方で見つかる整数解は、あくまで不定 方程式の整数解 「の1つ」であり,それがすべての解であるわけでも、あるい は最もシンプルな解であるわけでもないことには注意してください。 当然次なる興味は,1次不定方程式の「すべての整数解」を求めることは きないかということになります.この「すべての整数解」のことを次 定方程式の一般解といいます。その求め方は後ほど詳しく説明しますが、実 「すべての」 整数解を求めるためには, 少なくとも「1つの」 整数解を自 求めなければなりません.そこで,まずは先ほどの作業で「1つの」整数 求める練習をしっかりとしておきましょう。

回答募集中 回答数: 0
数学 高校生

水色の印をつけているところなんですけど、なぜM殻が18じゃなくて8なんですか??解説お願いします。

基本例題3 原子の構成 次の各原子について、下の各問いに答えよ。 (ア) 12C (イ) 'C (ウ) 180 (1) S (オ) Ca 8-19 (1) (ア)(イ)のような原子を互いに何というか。 (2) 原子核中の中性子の数が等しい原子はどれとどれか。 (ア)~(オ)の記号で記せ。 (3)最も外側の電子殻がN殻である原子はどれか。 (ア)~(オ)の記号で記せ。 (4) 価電子の数が最も少ない原子はどれか。 (ア)~(オ)の記号で記せ。 考え方 (1) 原子番号は同じで、質量数が異なる原子ど うしを互いに同位体という。 2) 中性子の数=質量数陽子の数 (原子番号) _3) N殻は内側から4番目の電子殻であり、 最 外殻がN殻になる原子は第4周期に属する。 4) 貴ガス以外の典型元素の原子では,最外殻 電子の数と価電子の数は等しい。 貴ガスは安定 であるため、価電子の数を0とする。 (2) 解答 (1) 同位体 (2) 中性子の数は, (ア): 6, (イ): 8, (ウ):8, (エ): 16, (オ):20である。 (イ) と (ウ) (3) 2Caは第4周期に属し, その電子配 置は,K2, L8, M8, N2 である。(オ) (4) (ア)(イ) の価電子の数は4, (ウ) は6,(エ)は6(オ)は2である。(オ) M 基本例題 4 原子・イオンの電子配置 →問題 22.24 次の(ア)~(オ)の電子配置をもつ粒子について,下の各問いに答えよ。 (ア) (イ) (ウ) (エ) (オ) (8+) 10+ 11+) 12+ 17

未解決 回答数: 0
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1
数学 高校生

指針の所について質問です。なぜ道順によって確立が異なるのですか?

420 基本 例題 54 平面上の点の移動と反復試行 右の図のように、東西に4本,南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき、 途中で地点P を通る確率を求めよ。 ただし、各交差点で、東に行くか, 北に行くかは等確率と し、一方しか行けないときは確率1でその方向に行くも のとする。 0000 A 基本 52 求める確率を 指針 A→P→Bの経路の総数 A→Bの経路の総数 5C2X2C2 から, 7C3 とするのは誤り これは、どの最短の道順も同様に確からしい場合の確率で, 本間は道順によって導 が異なる。 例えば, A111→→P→→Bの確率は 11 . ・1・1・1・1=- 2 8 22 P 重 右 出 別 た A-1-11 P →Bの確率は →→ 111 1 1 ·1.1=- . A 32 222 したがって,Pを通る道順を,通る点で分けて確率を計算する。 右の図のように, 地点 C, D, C', D', P' をとる。 C D P 解答 Pを通る道順には次の3つの場合があり,これらは互いに C' D' 排反である。 P [1] 道順A→C→C→P この確率は 1/x/x/x1x1=(1/2)=1/2 8 A [2] 道順 A→D'′ →D→P この確率はC(1/2)(1/2)x1/12×1=3(1/1)= 3 16 [3] 道順 AP'→P この確率はC(1/2)(1/2)×1/2=6(1/2)= 5 よって, 求める確率は 1 3 + + 8 16 32 63 16 = 32 = 6|31|2 [2] ○○○↑と進む ->> ○には, 1個と 12 入る。 [3] 〇〇〇〇と進む ○には, 2個と 入る。 -> [1] ↑↑↑→→ と進む。

未解決 回答数: 1