学年

教科

質問の種類

数学 高校生

3番の答えの矢印のとこがわかりません

基礎向 第3章 2火 26 1次関数のグラフ (2)(i) (0)=|01|+2=|-1|+2=3 (2)=|2-1|+2=1+2=3 f(4)=|4-1|+2=3+2=5 (i) 0≤x≤35, -1x-12 よって, z-12. 2≦x-1+2≦4 O≦x<1のとき ところを考え 1≦|x-1|≦2 (1)次の方程式のグラフをかけ. (i)g=1 (i)x=2() y=-x+2) (iv)g=2x-1 (2) 関数f(x)=-1+2について、次の問いに答えよ。 (i) f(0),(2)(4) の値を求めよ. (定義域が0k3のとき, 値域を求めよ. (1) 座標平面上の直線は、次の2つのどちらかの形で表せます。 ①y=mx+n ② x=k ①は傾きで点(0,n) を通る直線を表します。 ②は点(k, 0) を通り, y 軸に平行な直線を表します. ②は傾きをもたない 2) y=f(x)において,のとりうる値の範囲を定義域, その定義域に対応し て決まるf(x) (すなわち,y) のとりうる値の範囲を値域といいます。 (1)(i) 94 解答 (ii) y |x=2 よって, 値域は, 2≦f(x)≦4 注 (答) 定義域の両端の f(0)=3,f(3)=4だから, 値域は 3≦f(x)≦4 値を求めても値 とは限らない 11で学んだ絶対値記号の性質を利用して, y=f(x) のグラフをかいて, 値域を求めてみましょう x-1 (x≧1) |x-1|= だから, -(x-1) (x<1) 0≦x≦の範囲において、 f(x)={\ +1 (1≤x≤3) 1-1+3 (053≤1) よって, f(x)=x-1|+2 のグラフは右図のよう になるので,求める値域は 2≤ f(x)≤4 Y 0 2 y=1 xC 0 2 18 (iv) y /y=2x1 1 ポイント 関数の値域は、定義域の両端のyの値を調 は不十分. グラフをかいて求める 演習問題 26 その問いに笑

未解決 回答数: 1
数学 高校生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 例題 121 ガウス記号を含む方程式 特講 S 次の方程式を解け。 ただし, [x]はx を超えない最大の整数を表す。 (1)[2x] = 3 (2)[3x-1] = 2x (3) [2x]-[x] = 3 (1) Action ガウス記号は, n≦x<n+1 のとき [x] = n として外せ 例題120 (1),(2)はガウス記号が1つ[x]=n のとき n≦x < n+1 として外す 場合に分ける 48217-2 (3)はガウス記号が2つ 幅1ごとに値が変わる 一般にこの部分で考えてみる ←[] 1 2 01 32 x 2 n [2x] => n+1/2n+1 3 ごとに値が変わる (ア)(イ) 思考プロセス 章 9 2次関数と2次不等式 = 3 ≦x<2 2 2x 2, 3 *>* 方程式の解は,不等式で 表される範囲になる。 ■ [3x-1] は整数である から, 2xも整数になる。 2x≦3x-1 より x≧1 3x-1 < 2x+1 より x<2 (1) [2x] = 3より, 3≦2x < 4 であるから ... (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 。 4 2≦2x < 4 であり、 2x は整数より 3 よって x=1, 2 (3) [2x]-[x]=3・・・② とする。 1 (ア) n≦x<n+ (nは整数)のとき 2 2n≦2x<2n+1 であるから [2x] = 2n xを幅 1/2 で場合分けす る。 また,[x] = nであるから,②は2n-n=3x よって n=3 ゆえに 3≤ x < x</ (イ)n (イ) n+ n+ 2 2 ≦x< n +1(n は整数)のとき 2n+1≦2x<2n+2 であるから [2x] = 2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって n=2 5 ゆえに ≦x<3 2 5 (ア)(イ)より 12/21/12 01 1+ (1) [3x] = 1 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (2) 2x=[√5] (3) [2x+1]=3x (4) [3x]-[x]=1 217

未解決 回答数: 0