学年

教科

質問の種類

数学 高校生

130. このような具体例(図を書いてみる等)で規則性を考えて解く問題において、どういう感じで記述するのがいいのでしょうか??

582 ①① 基本例題 130 図形と漸化式 (1) ・・・ 領域の個数 平面上に,どの3本の直線も1点を共有しない, n本の直線がある。 次の場合、 平面が直線によって分けられる領域の個数をnで表せ。 (1) どの2本の直線も平行でないとき。 (2) (2) 本の直線の中に, 2本だけ平行なものがあるとき。 指針 (1) n3の場合について,図をかいて考えてみよう。 ヨコ 解答 an (1) n本の直線で平面が α 個の領域に分けられているとする。 (n+1) 本目の直線を引くと,その直線は他のn本の直線で (n+1) 個の線分または半直線に分けられ、 領域は (n+1) 個 だけ増加する。 ゆえに An+1=An+n+1 ¿+(T+5√]$¬1+ よって an+1-an=n+1 また a₁=2 数列{an}の階差数列の一般項はn+1であるから, n ≧2の とき これはn=1のときも成り立つ。 201 ゆえに, 求める領域の個数は __n²+n+2 2 (図のD1~D』)であるが,ここで直線ls を引くと,ls は 42=4 l1,l2 と2点で交わり、この2つの交点で ls は3個の線分また は半直線に分けられ, 領域は3個 (図のDs, Ds, D7) 増加する。 よって as=az+3 2.2-0 PARTY 同様に, n番目と(n+1) 番目の関係に注目して考える。 n本の直線によって α 個の領域に分けられているとき, (n+1) 本目の直線を引くと 域は何個増えるかを考え, 漸化式を作る。 2-14 (2) (n-1) 本の直線が (1) の条件を満たすとき, n本目の直線はどれか1本と平行になる から (n-2) 個の点で交わり, (n-1) 個の領域が加わる。 n-1 an=2+Σ(k+1)=- k=1 n²+n+2 2 (2) 平行な2直線のうちの1本をeとすると,l を除く (n-1) 本は (1) の条件を満たすから,この (n-1) 本の直線で分けら れる領域の個数は (1) から (8+.0) an-1 更に,直線ℓを引くと,ℓはこれと平行な1本の直線以外の 個の点で交わり の領域が増え よって、求める領域の個数は an-1+(n-1)=- (n−1)²+(n−1)+2 2 n²+n 2 +(n-1)=- n=3 Ilz D₂ [類 滋賀大] D3 Do D [=8+₁0 D₁ k=1 Σ(k+1)="Ek+ Z1 =(n−1)n+n-1 D2 a3=7 人 一 (n+1) 番目の直線は n本 その直線のどれとも平行でな いから,交点はn個。 (1) の結果を利用。 l DA αn-1 は, (1) の annの 代わりにn-1 とおく。 e

回答募集中 回答数: 0
数学 高校生

図形と漸化式の範囲です。 やり方がわからないので教えて欲しいです。

図形と漸化式 (1) 本例題 35 「上の円は同一の点では交わらない。これらの円は平面をいくつの部分に分け 平面上にn個の円があって, それらのどの2個の円も互いに交わり、3個以 00000 るか。 & THINKING CHART 漸化式を作成し, 解く問題 (求める個数を αとする) 1 ai, a α3, ・・・・・・を調べる (具体例で考える) 2 an ① まず, n=1, 2, 3 の場合について図をかくと、 下のようになる。 この図を参考に、 2 平面の部分は何個増加するだろうか? n=2 とみ+1の関係を考える (漸化式を作成)・ n=1 an+1 を anとnの式で表した漸化式を作ろう。 円を1個追加すると、 ① 平面の部分は+2 (交点も+2 ) ゆえに n=3 Tran ① 5 (2) 平面の部分は +4 (交点も+4) n個の円によって平面が個に分けられるとすると」=2 平面上に条件を満たすn個の円があるとき,更に,条件を満 たす円を1個追加すると, n個の円とおのおの2点で交わる から交点が2個できる。 この2n個の交点で,追加した円 がn個の弧に分割される。これらの弧によって, その弧が 含まれる平面の部分が2分割されるから,平面の部分は 2n 個だけ増加する。 よって an+1=an+2n よって, n ≧2のとき an+1=an=2n an=a₁ + Z2k=2+2• 1² (n−1)n=n²_n+2 k=1 =2であるから, この式はn=1のときにも成り立つ。 したがって, n個の円は平面を (n²-n+2) 個の部分に分ける。 • RACTICE 35 ⑧⑨ 6 3 ⑦ 4 基本 29 ① 分割された弧の数と同じだ け平面の部分が増える。 403 ② 1歳 4 新化式 階差数列の一般項が2n n=1 とすると 1²-1+2=2 n≧2 とする。 平面上にn個の円があって,それらのどの2個の円も互いに交わり, ENE 3個以上の円は同一の点では交わらない。これらの円によって,交点はいくつできる

回答募集中 回答数: 0