学年

教科

質問の種類

数学 高校生

(1)は24>x≧12という範囲でもいいですか?

**** 例題 25 不等式の応用 RUTHIOPS (1) Aさんの通う学校から自宅までの道のりは24km である.この道 のりを、初めは時速4km, 途中からは時速3kmで歩いたら, 所要 時間は7時間以内であった. 時速4kmで歩いた道のりはどれほど か. 5-\ $50 (>» (4) (2) 連続する3つの整数の和が37以上になるもののうち, その和が最 小となる3つの数を求めよ. ·DS+pl 考え方 未知のもの(求めたいもの) をxとおいて不等式 を作るとよい。 (1) 時速4km で歩いた道のりを xkm とする。 (道のり) = (速さ) × (時間) の関係を利用すればよい. 解答 (2) 連続する3つの整数は、 中央の数をxとおく と, x-1, x, x+1 と表すことができる. 学校 (1) 時速4km で歩いた道のりを xkmとすると. (7) Va+20 tl va 歩いた時間は,(時間) ・・・・・・① x 4 y + 「より大きい」 「より小さい」「未満」>,< 「以上」,「以下」......... M, ≦ 時速4km 時速3km -xkm (24-x) km. 24-x 3 道のり=速さ×時間 道のり 時速3kmで歩いた時間は, より 時間= 時速3kmで歩いた道 速さ (時間) ...... ② ①,②合わせて7時間以内であるから、Aのりは、全体24km 24-x+1 3 ≦7 からxkmを引けばよ 3 3x+4(24-x)≧84 より, x≧12 ID=A - よって、時速4kmで歩いた道のりは, 12km以上 時速4kmで歩)- ・24km 何をxとするか書く. 不等式を作る. 12 自宅 18 x

回答募集中 回答数: 0
数学 高校生

92. 答えは合っているのですが、(文字を具体的な数字に書き換えて解き方を考えたので)うまく記述文は書けませんでした。仮にこれが記述問題だとしたら何割くらいの得点になりますか??

R 1 減少 重要 例題 92 既約分数の和 00000 pは素数m,nは正の整数でm<nとする。mとnの間にあって, pを分母と する既約分数の総和を求めよ。 $1=1 61=-5 7+58r 指針▷既約分数の和→全体の和から整数の和を除くという方針で求める。 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 11 8 9 10 7 3'3' 3'3' (*) 解答 であり、既約分数の和は(*)の和から3と4を引くことで求められる。 このことを一般化すればよい。 gを自然数として, m<g p ① のうち、 - pn-pm-1 2 9 12 13 3, 3 pm<g<pnであるから g=pm+1,pm+2, よって 9_pm+1 pm+2 Þ þ P これらの和をS とすると これらの和を S2 とすると S2= が整数となるもの _=m+1,m+2, -< n を満たす 14 3' 3 n-m-1 2 -(m+n) S= (+ 24288 Les ass (n-1)-(m+1)+1 2 159), arc -(m+n) p S=(pn-1)-(pm+1)+1(om+1.pn-1)S=1/2"(a+1) SODUL P ...... pn-1 n-1 を求める ………, pn-1 -{(m+1)+(n-1)} 【同志社大] 1/2 (m+n){(n−m)p−(n−m)} 1/12(m+n)(n-m)(b-1) ゆえに 求める総和をSとすると, S=S-S2 であるから pn-pm-¹ (m+n)_n_m−¹(m+n) 2 2 (*)は等差数列であり、3と4は 2と5の間にある整数である。 「とんの間」であるから, 両端のとnは含まない。 < 初項 基本 89,90 pm+1 か 公差 1 等差数列。 GROER) 45.= n(a+1) mとnの間にある整数。 (全体の和) (整数の和) 523 3章 12 等差数列 委 Ja に

回答募集中 回答数: 0
数学 高校生

青チャート数Ⅱ、EX101です。どれも解答を読めば理解はできるのですが、公式をどのように選べば良いかわかりません。 (1)は2倍角、3倍角公式で解こうとして、 (2)はcosθで括ってから合成をしようとして、 (3)は√2(sinx + cosx) を合成しようとして、 ... 続きを読む

50 スマー の例題 入の方 [解] の2 青チ チ 八重お種学問 ■日 A 選び あり 考 例 間 え・ ど [ デ 270 I EXERCISES 100nを自然数を実数とするとき, 次の問いに答えよ。 (1) cos(n+2)0-2cos@cos (n+1)0+cosn0-0 を示せ。 (2) cos0xとおくとき, cos50 をxの式で表せ。 (3) cos' の値を求めよ。 26 三角関数の和と積の公式. 101 (1) sinx+sin 2x+sin 3x cosx+cos2x+cos3x 人(②2) 050<1とする。 不等式0<< sinocoso+cos²0 < 1 を解け。 (3) 05x<2のとき、方程式 sinxcosx+√2 (sinx + cos.x)=2 (3) 弘前大) 12/12 とするとき、次の問いに答えよ。 27 三角 (1) tan0x とするとき, sin20, cos20 をxで表せ。 (2) xがすべての実数値をとるとき, p= 7+6x-xl 1+x ア (1) の結果を用いて, P を sin20, cos20 で表せ。 (イ))の結果を用いて, Pの最大値とそのときのxの値を求めよ。 IN とする。 a 103 の方程式 sinx+2cosxk (0sxm) が異なる2個の解をもつとき の値の範囲を求めよ。 [愛知] G ②104 関数f(0)=acos0+(a-b)sinocos0+bsin²0 の最大値が3+√7, 3-√7 となるように,定数a, bの値を定めよ。 CORMAS 102 (1) cos'01 105 平面上の点Oを中心とし、 半径1の円周上に相異なる3点 , B, C △ABCの内接円の半径は1/3以下であることを示せ。 京都 104 105 100 (1) 左辺の2cos@cos(n+1)0. 積和の公式を利用して変形。 (3) 6 7 x として (2) の結果を利用。 101 (1) 三角関数の合成と、和積の公式を用いて、 積=0の形に変形。 (2) sin@coscou'eは2次の次式であるから、20の三角関数で表され (3) sin.x+cos.x=tとおく。 の値の範囲に注意。 1+tan 1+² (2) (1) 結果 ① を利用。 103 三角関数の合成を利用。 f(x)=sinx+2c0sx として, y=f(x)のグラフと なる2つの共有点をもつ条件を考える。 )の右辺は、2次の同次式であるから、20の三角関数で表すことができる。 AABCの内心を1とすると ICsin IDC において、正霊定理から得られる等式を利用して、 rを 1 174 数学Ⅱ よって x0であるから ゆえに ここで, 0 すなわち (16x20x²+5)=0 EX €101 これを満たすxの値は 16x20x²+5=0 10± √10-16.55+√5 よって 求める値は 10 t < cos<cos' <cos³0 16 ゆえに (1) 0のとき、次の方程式を解け。 (1) P (左辺) (右辺) 5+√5 8 8 よって sinx+sin 2r+sin3x-cosx+cos 2x+cos3x (2) とする。 不等式√ sincom0+cos0を解け。 (3). DEx 240LB, IlliCsinxcor+/Z(sinx+cox)= ¢H = (sinx-cos.x)+ (sin2x-cos2x)+ (sin3x-cos 3.x) -√2 (sin(x-7)+sin(2x-7)+sin(3x-7)} ここで,sin(x)+sin(3x-4) 2sin (2x-4) cons.x であるから P=√2 (2 cosx+1)sin(2x-4) したがって、方程式は (2 cos x+1)sin(2x-)-0 cosx/12/2… ① または sin (2x-4) -0... ② xの範囲で、①を解くと x 12/23 また、xから この範囲で②を解くと 2x-4-0, z x すなわち x 12/23 したがって、求める幅は4001/12/12/10 (2)√3 sin cos0+cos²0= √3 + 1/cos 20 + 1/2 -sin20+ =sin(20+)+1/2 とみる。 $2√3 3+√5 5-√3 ←同じ を合成。 ←8- in/+ -2 si 1 +2=0+ b 0<sin(20+)+<1 - <sin (20+4)</ すなわち 20 とおくと、00のと この <sint</1/2を解くと 1/12 くたく/7/2 ゆえに 1/20/8/1/2 すなわち書くの (3) sinx + cosxとおき、両辺を2乗すると fsin'x+2sinxcosx+cos³x よって 不等式は よって sinxcosx ゆえに、方程式は221-2-0 21+4√21-5-0 (√21-1)(√21+5) - 0 整理すると ゆえに したが ここで 1-√2 sin(x+4) よりであるから -√2 515√2 よって、①のうちするものは 15212 √2 sin(x+4)= sin(x+4)= ②から よって1/12 17/12/0 EX 102 とするとき、次の問いに答えよ。 (1) tunxとするとき, sin2020 で表せ。 (2) xがすべての実数値をとるとき、とする。 いて、 Psin2/cos20 で表せ。 (1) cos201 イの結果を用いて、 の最大値とそのときのxの値を求めよ。 であるから 1+tan0 1+x² sin20-2sin0 cos 02 (tan cos 0)cos0 2x 1+x1+x² =2tan/cos²0=2x. cos 20=2 cos³0-1-21 1-x² -1=1+x² ● 数学 175 おき換え が変わることに注意 ix, cox MBR f-stax +con おき換えを利用。 の公式で解くと MITWE ←EABROOK 変数のおき換え が変わることに注意 MCMAS ←相互開催 ←i sind -tan feos 4章 EX

回答募集中 回答数: 0