学年

教科

質問の種類

数学 高校生

答えがないので、問3.4.5の答えが合っているか見ていただきたいです🙏🏻お願いします🙇🏻‍♀️

に 数と式 0でない定数項の次数は0とする。 数 0 の次数は考えない。 着目する文字を含まない項を定数項という。また, 例 3 多項式 x+ax2+bx-2c はxについて3次式である。 の係数は1, x2の係数は α, xの係数は6, 定数項は2c 5 5 問3 次の多項式はxについて何次式か。 また, 各項の係数と定数項を答えよ。 (1) 2x-13次式 12-1 (2)x2+(a+b)x+αb 2次式 atb :ab 例 4 多項式 xy+y2+1 は, xについて3次式であり, yについて2次 式である。 また, xとyについて4次式である。 問4 10 次の多項式は、[ ]内の文字について,それぞれ何次式か答えよ。 2次式 (1)x-xy2 4次式 x][y][xとy]ら株式 10 15 (2)x+axy+axy2+y[x],[y][xとy] 4次式 3次式 4次式 多の整理 xについての多項式 5x2+x-2x2+1 において, 5x2と2x2のように, 文字の部分が同じである項を同類項という。 15 同類項は, 5x²-2x2=(5-2)x2 =3x2 : a ( 20 のように1つにまとめることができる。 多項式は、ある特定の文字に着目し, 7x2+4x+8 のように各項を次数 の高い方から順に並べて整理することが多い。 このことを降べきの順に 整理するという。 また, 8+4x+7x2 のように次数の低い方から順に並べ ることを昇べきの順に整理するという。 20 例 5 多項式 x2+2x-1-4x²-6x+3 を降べきの順に整理すると, (1-4)x2+(2-6)x+(-1+3)=-3x²-4x+2 25 問5 次の多項式を xについて降べきの順に整理せよ。 (1)3x²-5x+6-5x2+2x-3 (2)2bx+x+5c-ax2+bx =3x5x²-5x+2x+6-3 =x-ax+bx+5c -2x^2-3x+3

解決済み 回答数: 1
数学 高校生

なぜ青線部のことがいえるのですか?

18 第1章 数と式 標 問 6 式の値 ( 分数式) 19 解答 (1) 2x-y+z=0, x+2y+8z=0より (東亜大) x=-2z,y=-3z よって, ry+y+zx_(-2z)(-3z)+(-3zz+z(-2z) x²+ y²+z2 (-2z)+(-3z)2+22 分数式を1つの文字で表す 2式を連立して, x,yについ て解く (1) 実数x, y, はいずれも0でなく, 2x-y+z=0とx+2y+8z=0 の xy+yz+zx 両方を満たすとき x² + y²+z² の値を求めよ. ytz_z+x+y=mとするときの値を求めよ. (2) 2 I y また,(1+2) (1+72)(1+/-) の値を求めよ. (6-3-2)z2 1 = (東海大) (4+9+1)2214 (2) I 精講 (1) 文字が3つありますが 解法のプロセス 2x-y+z=0, x+2y+8z=0 を利用して, 1つの文字で残り2つの文字を表現 (1) 2c-y+z=0, x+2y+8z=0 xy+yz+zx し、 に代入します. x²+ y²+z² を連立してz,yをを用い て表す. (2) 分数式の値を求める際,その値をとで もおいて考えていくとラクなことが多いのです. ↓ my+yz+x この問題では、問題文でmとおいてあります. +2+2に代入する. I y+z_z+x+y=mより y 2 y+z=mx ①, z+x=my..... ② x+y=mz... ③ ①+②+③ より 2(x+y+z)=m(x+y+z) よって, (x+y+z) (m-2)=0 したがって, x+y+z=0 またはm=2 x+y+z=0のとき, y+z=1=-1 I y+z. =m より y+z=mx ...... ① I +1=mより2+x=my....... ② y 同様に, z+x= y=-1, y y x+y=-=-1 2 2 x+y=mよりx+y=mz... ③ 2 y+z=-x を代入 m=2となるx, y, zが存在 することを主張している なお、m=2のとき ①②よ りェyが得られ、同様に ② ③ より y=z が得られ 解法のプロセス よって, m=-1 y+z_z+x+y=m (2) 2 I y また,r=y=z (≠0) のとき =2となる? したがって,m=-1,2 を y+z=m, 2+1=m y (1+1/2)(1+7)(1+2/)=ty.y+zz+p y Z ytzztexty る I y 2 =m³ =-1, 8 として, ① ② ③を連立してmを求めます. こ のとき,x,y,zの文字を消去していくのも1つ の方針ですが,x,y,zが同等の扱いを受けてい るので(ryやzに対して特別な扱いを受けて いない), x, y, zの対称性を利用して処理するの が簡単でしょう (標問9参照)。 ①+②+③ をつくると 2(x+y+z)=m(x+y+z) (x+y+z) (m-2)=0 が得られます. これから x+y+z=0 またはm=2 となります. I x+y=m 2 と扱って [y+z=mx z+x=my x+y=mz とする. 演習問題 ↓ 6-1 x+4y=y-3.z≠0のとき、 2x²-xy-y² この連立方程式を解く、 2x2+xy+y2 の値を求めよ. (山梨学院大) IC (6-2x+y=y+z=2のとき、この式の値を求めよ。 (札幌大) y 章 1

解決済み 回答数: 1
数学 高校生

写真の黄色の部分についてです。 なぜ-2≦ a-2<1 ではだめなのでしょうか? 右に解説が書いてありますが、よく分からなかったのでどなたか教えてくださいm(_ _)m

A2 [1] 数と式 (10点) についての2つの不等式 7x-3<-3<2x+7 ...... ①, a(x+2)<q^ ・②が ある。ただし, は0でない定数とする。 (1) 不等式①を解け。 (2) 不等式①、②を同時に満たす整数xがちょうど3個となるようなαの値の範囲を求めよ。 配点 (1) 4点 (2) 6点 解答 (1) 7x-3 <-3 より 7x < 0 x < 0 また -3 <2x+7 より -2x < 10 *>-5 よって、 ③ ④の共通範囲を求めて -5<x<0 完答への 道のり 不等式 7x-3<-3 を解くことができた。 (2) B 不等式 -3 < 2x+7 を解くことができた。 C 不等式①を解くことができた。 闇 -5<x<0 (①は、連立不等式 [7x-3 <-3 -3 <2x+7 を表す。 (i)>0 ②は x+2 <a となるから x<a-2 ⑤ ⑥を同時に満たす整数xがちょうど ⑥ 3個となるのは、 ⑤と⑥の共通範囲に含 まれる整数が-4, -3, -2 になると きである。 したがって -2<a-2-1 0<a≤1 a>0より 0<a≦1 (ii) a <0 のとき ②は x+2>αとなるから x> a-2 ⑤⑦を同時に満たす整数xがちょうど 3個となるのは、⑤と⑦の共通範囲に含 まれる整数が-3, 2, 1 になると きである。 5-4-3-24-10 a-2 -5-4-3-2-10 a-2 ②の両辺を4で割るとき,αの正 負によって不等号の向きが変わるの で,a>0 とa<0 の2つの場合 に分けて考える。 共通範囲に含まれる3個の整数を 押さえる。 等号の付け方に注意。 a2=-1 のとき,⑥の範囲に -1は含まれな いので, a-2-1 のときも適する。 共通範囲に含まれる3個の整数を 押さえる。 -26-

解決済み 回答数: 1
数学 高校生

44の問題が意味がわかりません。解説お願いします

標準」レイ 吸う 向か が、入 ニチ にい 11 条件と集合 42 [命題の真偽] 次の命題の真偽を答えよ。 (1) x=1ならばx+x2=0である。 (2)|x|>3ならばx>3である。 であるための必要十分条件である。 01482- 次の(1)(2)(3)(4)のそれぞれについて の中に適する番号を入れよ。ただし、 (1)の解答は①ではない。 (1)①は (2) □は②であるための十分条件であるが必要条件でない。 (3) □は③であるための十分条件であるが必要条件でない。 (4) □は②であるための必要条件であるが十分条件でない。 12 必要条件と十分条件 43 [必要条件と十分条件] [必修 テスト 次 ただしx,yは実数とする。 に適するものを下の①~④から選べ。 ① 必要条件であるが十分条件でない。 ②十分条件であるが必要条件でない。 ③ 必要十分条件である。 ④ 必要条件でも十分条件でもない。 (1) x=1であることは, x=1であるための (2)xy であることは,xy"であるための (3) x=yであることは, kx=ky であるための (4)x+y>2 かつxy>1であることは,x>1かつy>1であるための [必要条件 十分条件 必要十分条件] 実数a, b について、 次の5つの条件がある。 ① ab=0 ② a-b=0 ③ |a-b|=|a+6| ④a²+b²=0 ⑤a²-b²=0 20 1章 数と式 6140 140 13 逆・対偶 45 [否定] 次の条件の否定をつくれ。 (1) x < 0 または y > 0 (2) x=2かつy=1 46 [逆・対偶の真偽] 目 テスト 次の命題の逆・対偶をつくり, その真偽を答えよ。 「x=1 ならばx=x」 (U) HINT 42 命題が真であることは真理集合の包含関係からわかる。 偽の場合は、反例をあげる。 C 43gの真偽をはっきりさせる。 必要条件と十分条件を正しく判断しよう。 Q 1-14 44 la-bl=la+blは両辺を平方してみる。 1-14 45 「かつ」の否定は「または」 「または」の否定は「かつ」に変わる。 1-15 46 対隅の真偽はもとの命題の真偽と一致する。 1-16 12

回答募集中 回答数: 0