学年

教科

質問の種類

数学 高校生

(2)の4戦目でAの優勝が決まることと、4戦やってAが3回勝つことは何が違うんですか?

224 第5章 確率 練習問題 8 A,Bの2人が次のようなゲームをする. 1個のサイコロを振って2以 下の目が出たらAの勝ち, 3以上の目が出たらBの勝ちとし,これを1回 のゲームとする. これを繰り返し行い, 先に3勝した方を優勝とする. (1) ゲームを4回繰り返したとき, Aが2勝しBが2勝する確率を求めよ. (2) 4戦目でAの優勝が決まる確率を求めよ. (3) Aが優勝する確率を求めよ. 精講 「日本シリーズ」やメジャーリーグの「プレイオフ」のような,「先 に何勝かした方が勝ち」というルールの問題です.(1)と(2)の違いに 注意してほしいと思います. (1) では勝ち負けの順番は自由ですが,(2)では最後 は必ずAが勝つことが必要になります. 解答 1回のゲームで,Aが勝つ確率は Bが勝つ確率は1/3である。 3' (1) 4回のゲームで, 「Aが勝つ」 が2回起こる確率なので, 反復試行の確率 公式より 4C2 3 2 = 8 27 (2) 4戦目でAの優勝が決まるのは, 3戦目終了時, Aが2勝,Bが1勝, = 戦目でAが勝つときである.その確率は 3C2 3 3 (1)(2)x1/12 × 3 27 (3)「Aが優勝する」のは, 「3戦目でAの優勝が決まる」, 「4戦目でAの優勝 が決まる」, 「5戦目でAの優勝が決まる」 のいずれかである. この3つで 合分けして考える. (ア)「3戦目でAの優勝が決まる」 確率は (イ)「4戦目でAの優勝が決 3 (1) 一 1 = 27

解決済み 回答数: 1
数学 高校生

なぜ この問題では反復試行を用いるのですか??

334 基本 例題 48 点の移動と反復試行の確率 00000 方向に1だけ進むことにする。 さいころを4回投げたとき, 原点から出発し 軸の正の方向に1だけ進み, 6の約数でない目が出たとき,Pはx軸の負の x軸上に点Pがある。 さいころを投げて, 6の約数の目が出たとき,Pはx x=121) p.329 基本事項2 基本47 た点Pが原点にある確率は,x=3 の点にある確率は [関西学院大〕 点にある確率はである。 CHART & SOLUTION 反復試行と点の移動 まず 事柄が起こる回数を決定 6の約数 でない 6の約数 さいころを4回投げるとき, 各回の試行は独立であるから,その 目の出方によって点Pを動かすことは反復試行である。 4回の試行で,6の約数の目が出る回数を とすると,点Pの x 座標は x=1•r+(−1)·(4-r) (r=0, 1, 2, 3, 4) -1 +1 確率 確率 1/3 P x 解答 さいころを1回投げたとき, 6の約数の目, すなわち 1, 2, 4_2 3,6が出る確率は 63 反復試行の確率 nCrp'(1-p)" T12 確率とnr さいころを4回投げたとき, 6の約数の目が回出るとする と、点Pのx座標は をチェックする。 (ア) x=0 のときであるから よって r=2 x=1r+(-1)(4-r)=2r-4 (r= 0, 1, 2, 3, 4) 2r-4=0 6の約数の目が回出た とき 6の約数でない目 は4-回出る。 SIA ゆえに、求める確率は C22)2/1/13-12/27 8 (イ) x=3のときであるから 2r-4=3 これを満たす整数rは存在しない。 よって, 求める確率は 0 (ウ) x=-2 のときであるから 2r-4=-2 tr= 2 inf (イ) さいころを4回 |投げた後の点Pの位置は よって r=1 ゆえに、求める確率はC(23)(1/3) - 4-1 8 - 81 x=-4,-2,0,2,4のい ずれかであるから,x=3 そ となることはないため、 の確率は0である。 PRACTICE 48° 軸上を動

解決済み 回答数: 1
数学 高校生

数aの確率の問題です。 写真の」までは理解できるのですが、〜のところから理解できないので、解説お願いします。

重要 例題 57 独立な試行の確率の最大 423 00000 さいころを続けて100回投げるとき、1の目がちょうど回 (0≦k≦100) 出る確 率は 100 Ck × 6100 であり,この確率が最大になるのはk=1のときである。 [慶応大 基本 49 (ア)求める確率をする。 1の目が回出るとき, 他の目が100回出る。 (イ) 確率 Dw の最大値を直接求めることは難しい。 このようなときは, 隣接する2項 +1の大小を比較する。 大小の比較をするときは,差をとることが多い。し かし,確率は負の値をとらないことと nCy= n! r!(n-r)! を使うため, 式の中に累乗 や階乗が多く出てくることから, 比 Dk+1 をとり 1との大小を比べるとよい。 +11papati (増加), pk ph+1 Þk <1⇔ +1 (減少) CHART 確率の大小比較 pk+1 比 をとり, 1との大小を比べる pk さいころを100回投げるとき, 1の目がちょうどk回出る 2 2章 ⑧ 独立な試行・反復試行の確率 解答 確率を とすると D=100C( 10 C * ( 11 ) * ( 53 ) 100-*-= 7510 100-k =100CkX 反復試行の確率。 6100 ここで Pk+1 100!-599-* == k!(100-k)! 5:00-(+1) pk (k+1)!(99-k)! <PE+D=100C (+) X k! (100-k)(99-k)! 10015100 -k 100-k 5(k+1) 6100 ・・・のkの代わりに +1とおく。 = (k+1)k! (99-k)! 5-599-k pw+1>1とすると 100-k >1 PR 5(k+1) 両辺に 5(k+1)[>0] を掛けて 100-k>5(k+1) これを解くと k<95=15.8... 6 よって, 0≦k≦15のとき Pk <Pk+1 <1 とすると 100-k<5(k+1) Pu 95 <kは 0≦k≦100 を満たす 整数である。 Dwの大きさを棒で表すと これを解いて k>- =15.8··· 6 よって, k16のとき したがって かくかく・・・・・・くかく 16, Pn> Pm+1 |最大 「増加」 減少 P16>p17> >P100 012 よって, w が最大になるのはk= 16のときである。 15 17 16 1100k 99

解決済み 回答数: 1