学年

教科

質問の種類

数学 高校生

2枚目の上から3行目の式 なんで2をかけたのかがわからないです。

14 第1章 式と証明 基礎問 6 分数式の計算 7/8823 次の各式を簡単にせよ. (3) 15 1 1 1 + T x+2 x+1 (x+2)-x(x+3)-(x+1) + x(x+2) の異なるものど うしを組み合わせる (x+1)(x+3) ことが基本 第1章 1 1 1 (1) + + (x-1)xx(x+1) (2) + IC (x+1)(x+2) x+1 x+2x+3 x+4 x+1 x+2x+3 土 1 2 4 (3) + + + 1-x 1+m2 1+m 1+x = {(x+2)+(x+1)(x+3)} 2(2x2+6x+3) x(x+1)(x+2)(+3) 組み合わせを変えると, 分子が複雑になります.たとえば, 1 1 1 IC 3 1 x+3x(x+3)'x +1 x+2 (x+1)(x+2) 1 1 (3) 2 4 + + + 精講 分数式の和, 差は通分する前に, いくつかのことを考えておかない と, ほう大な計算量になってしまいます。 1-x 1+x 1+x2 1+x4 (1+x)+(1-x) 2 4 2 + 2 + 1-x2 特殊な技術 (>(1) 「部分分数に分ける」) を用いる場合はともかく, 最低、次の2つは確認しておきましょう. I. 「分子の次数」 < 「分母の次数」の形になっているか? Ⅱ. 部分的に通分をしたらどうなるか? (2つの項の組み合わせを考える) 解答 1+m² 1+x 1-x 1+m² 1+x¹ + 2{(1+x2)+(1-x2)} 4 + (1-2) (12) 1+x4 1 I' 1+x4 4 + 4{(1+x)+(1-x)} 8 = (1-x)(1+x) 1-x8 <(x)はxxl6で はない! 参考 スポーツの大会で, 強いチームはシードされて2回戦から登場する ことがあります. このイメージで下図の組合せを捉えるとよいでし ょう。 (1) (x-1)x 1 1 1 1 1 1 = = x-1 x' x(x+1) IC x+1' 1 1 = x+1 x+2 だから (注) (x+1)(x+2) (与式) = ( x-1 1 x-1 x+2 x+1, \x+1 x+2) (x+2)-(x-1). 3 (x-1)(x+2) (x-1)(x+2) 注 この作業は「部分分数に分ける」 と呼ばれるもので,このあとの 「数列」の分野でも必要になる計算技術です。 (2)与式)=(1+1/2)+(1+2+1)(1+1+2)-(1+2+3) 分子の 1 1 1 + 1 IC x+1 x+2 x+3 次数を 下げる 1次式 1次式 1次式 1次式 1次式 1次式 2次式 4次式 ポイント 分数式の和差は通分する前に項の組み合わせを考える 演習問題 6 次の各式を簡単にせよ. + + x-2 x-3 x-4 (1) 3x-14 5x-11 x-4 8-5 x-5 bc ca ab + (2) (a-b)(a-c)+(b-c)(b-a) (c-a)(c-b)

解決済み 回答数: 1
数学 高校生

分母は0にしちゃダメとかいうのに、この問題では分母を0にする値を代入しててよく分かりません。 簡単に解説して欲しいです

討 付 基本 例 17 分数式の恒等式 -2x+6 a 次の等式がxについての恒等式となるように,定数a, b, e の値を定めよ。 ①① b C (x+1)(x-1)* x+1 x-1 (x-1)* ―+ 基本 15,16 指針 分数式でも、分母を0とするxの値(本間では1.1) を除いて、すべてのxについ て成り立つのが恒等式である。 与式の右辺を通分して整理すると -2x+6 (x+1)(x-1)* Q(x-1)-6(x+1)(x-1)+c(x+1) (x+1)(x-1)* 両辺の分母が一致しているから、分子も等しくなるように、係数比較法または 入法でa, b, c の値を定める。このとき、分母を払った 多項式を考えるから, 0にする値x=-1,1も代入してよい (下の検討 参照)。 (分母) 0から 分母を (x+1)(x-1)**0 両辺に (x+1)(x-1) を掛けて得られる等式 解答 2.x²+6=a(x-1)-6(x+1)(x-1)+c(x+1) もxについての恒等式である。 ① 係数比較法による解者 解答 1. (右辺)=a(x²-2x+1)-b(x-1)+cx+c =(a-b)x2+(-2a+c)x+a+b+c よって-2x2+6=(a-b)x2+ (−2a+c)x+a+b+c 両辺の同じ次数の項の係数は等しいから 「両辺の係数を比較して と書いてもよい。 a-b=-2,-2a+c=0, a+b+c = 6 この連立方程式を解いて a=1, b=3, c=2 解答 2. ①の両辺にx=-1, 0, 1 を代入すると,それぞれ数値代入法による解答 4=4a, 6=a+b+c, 4=2c この連立方程式を解いて a=1, b=3,c=2 の右辺に代入し、展開 このとき,①の両辺は2次以下の多項式であり、異なる 求めた a,b,cの値を 3個のxの値に対して成り立つから, ① は xについての 恒等式である。 したがって a=1, b=3,c=2 たものが①の左辺と一 致することを確かめて よい。 分母を0にする値の代入 分母を0にする値 x=-1,1を代入してよいかどうかが気になるところであるが、これ 問題ない。なぜなら、値を代入した式①は,x=-1,1でも成り立つ多項式の等式だ である。 すなわち, xにどんな値を代入してもよい。 そして、この等式が恒等式となるように係数を定めれば, 両辺を (x+1)(x-1)で割 られる分数式も恒等式である。 ただし, これはx=-1,1を除いて成り立つ。 等式 1 (x+1)(x+2)(x+3) a x+1 b C + + x+2 がxについての恒等式と x+3 うに、定数a,b,cの値を定めよ。 [類 静岡理工科大]

解決済み 回答数: 1