学年

教科

質問の種類

数学 高校生

赤丸の部分はどういう意味ですか

んけんと確率 本例題 39 2人でじゃんけんを1回するとき,勝負が決まる確率を求めよ。 e) 3人でじゃんけんを1回するとき,ただ1人の勝者が決まる確率を求めよ。 34人でじゃんけんを1回するとき,あいこになる確率を求めよ。 (3) あいこ になる じゃんけんの確率の問題では,「誰が」と「どの手」に注目する。 (2) 誰がただ1人の勝者か 3人から1人を選ぶから 3通り どの手で勝つか 「グー」, 「チョキ」 「パー」 の3通り 「全員の手が同じ」 か 「3種類の手がすべて出ている」場合があ る。 よって、 手の出し方の総数は,これらの場合の数の和になる。 | 2人の手の出し方の総数は 329(通り) 1回で勝負が決まる場合, 勝者の決まり方は 2通り そのおのおのに対して, 勝ち方がグー, チョキ,パーの3通 りある。 よって 求める確率は 3×3 1 27 3 2×3 2 9 3 勝負が決まらない場合は、 2人が同じ手を出したときの後で学ぶ余事象の確率 (p.335) による考え方。 3 2 3通りあるから, 求める確率は 1- 9 3 (2) 3人の手の出し方の総数は 3°=27(通り) 3通り 1回で勝負が決まる場合, 勝者の決まり方は そのおのおのに対して、勝ち方がグーチョキ,パーの3通 りある。 よって、求める確率は 本八 34=81(通り) (3) 4人の手の出し方の総数は あいこになる場合は,次の [1], [2] のどちらかである。 [1] 手の出し方が1種類のとき 3通り [②2] 手の出し方が3種類のとき グーグーチョキ, パー}, {グー, チョキチョキ, パー},| グーチョキパー, パー}の3つの場合がある。 よって、求める確率は 出す人を区別すると,どの場合も 4! 2! 基本38 4! 通りずつあるから, 21 ×3=36 (通り) (1) 3+36 13 81 27 1人の手の出し方が3通り, 2人でじゃんけんをするか 3×3通り 1人の手の出し方が3通り, 3人でじゃんけんをするか ら 3×3×3 通り 3×3×3×3 通り 4人全員が 「グー」または 「チョキ」または「パー」 例えば {グー, グーチョキ, パー} で「グー」 を出す2人を 4人の中から選ぶと考えて =14/01(通り) 4C2×2!= p.338 EX30 329 2章 6 事象と確率

未解決 回答数: 1
数学 高校生

数学A 条件付き確率の問題です。 問題の(1)の(ⅱ)の①と②の言ってることの違いがよくわかりません。 なぜこの問題は条件付き確率の和ではなく、「k=1,2,3かつ事象Aが起こる確率」の和が事象Aが起こる確率の求め方となるのですか?

例題 4 オリジナル問題 次のようなルールで行われる抽選会に1回参加する。 ・ルール ●表と裏が等しい確率で出るコインを N 枚投げる。 ●表が出たコインの枚数がん枚のとき,くじをん回引く。 この抽選会で使われるくじは、 何回引いても「当たりくじ」を引く確率がつね に一定値であるとする。 また, 抽選会に1回参加するとき 「当たりくじ」を 少なくとも1回引くという事象をAとする。このとき, 次の問いに答えよ。 (1) N=3, p=1/12 とする。 4 (i) k = 2 となる確率は ア イ である。 また,k=2という条件の下で ウ エオ 事象Aが起こるという条件付き確率は である。 よって,k=2であり、かつ事象A が起こる確率は カキ クケコ である。 (ii) 事象 A が起こる確率を求める方法として最も適当なものを、次の ⑩〜②のうちから一つ選べ。 ⑩k123 となる確率をそれぞれ求め, それらの和にかをかける。 ① 「k=1 という条件の下で事象Aが起こるという条件付き確率」, 「k=2 という条件の下で事象Aが起こるという条件付き確率」, 「k=3 という条件の下で事象A が起こるという条件付き確率」 を求め それらの和をとる。 ② 「k=1 であり、 かつ事象A が起こる確率」, 「k=2であり,かつ事 象Aが起こる確率」, 「h=3であり、かつ事象A が起こる確率」を求め, それらの和をとる。 (2) この抽選会で事象Aが起こる確率について述べたものとして最も適当な ものを、次の⑩~ ③ のうちから一つ選べ。 ⑩pが等しければ,Nが変化しても,事象Aが起こる確率は変化しない。 ①Nが等しければ,が変化しても、事象Aが起こる確率は変化しない。 ② かが等しければ,Nが変化しても,k=2 であるという条件の下で事 象Aが起こるという条件付き確率は変化しない。 ③Nが等しければ,が変化しても,k=2であるという条件の下で事 象Aが起こるという条件付き確率は変化しない。

回答募集中 回答数: 0
数学 高校生

写真1枚目の190で確率は同じものがあっても区別して考えるからPを使うのにどうして192ではCなのですか?確率だから赤玉の中でも全て区別して考える必要があるんじゃないんですか?

同じものを含む順列と確率 例題190 横1列に並べるとき,次の確率を求めよ. T, 0, H, O, K, U, A, 0, B, A の10文字から何文字か取り出し, 10文字を横1列に並べるとき,どの2つのも隣り合わない確率 現 10 文字の中から6文字を1列に並べるとき、どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 01, O2, 03, A1, A2 として,すべて異なるものとして考える (同様の確からしさ). 「解答 (1) T, 01, H, O2, K, U, A1, 03, B, A2 の10個を 39 1列に並べる並べ方は, 10通り 0504-10-0 1102 どの2つのOも隣り合わない並べ方は,まず0を除 7文字を並べ、さらに7文字の間と両端の8箇所 から3箇所を選んで 01,02, 03 を並べるときで, 7 X P3 (通り) (さすよって,どの2つの0も隣り合わない確率は, *#77! X8P3 7!×8・7・6 7 -10! 10.9.8×7! 15 FAKIN 1 (2) 10文字の中から6文字を1列に並べる並べ方は, 10P6通り聴率は、 PO I (i) 6文字のうち0が3つのとき 7 P3 X4 P3 (通り) (ii)6文字のうち0が2つのとき 7P4X3C2X5P2 (G) TUOSTAS 0405R (ii) 6文字のうち0が1つのとき 7P5×3C1×6P1 (通り) (iv) 6文字のうち0が含まれないとき P6通り = 01 7 10 **** 計算しない. 確率なので,あとで 約分する. (11(1)-(1) 000 ^^^^^ 7P4X3C2X5P2 ↑ よって, (i)~(iv) より 求める確率は, 01, O2, 0g のうち, 7 P3 X4 P3 + P4×32×5P2+P5×3C1×6P1+P6どの0を選ぶか. 10P6 ^^^^^^^^ 7! X8P3 約分しやすく工夫す る. 0の数によって順列 の総数が異なるため, 場合分けして考える. ^^^^ ASO7P3X4P3

解決済み 回答数: 1
数学 高校生

なぜ最小値が2以下である場合は反復試行の確率の公式を使わなきゃいけないのに、最小値が3以上である場合は階乗で済ませられるんですか?

ん。 取り出すとき、 これらは互い る事象をA となる。 47 91 利用す うこと。 一の2 通りの または んで 例 42 のさいこ 2以下と3以上などが さいころの出る目の最小値 23を繰り返し3回げるとき、次の確率を求めよ。 目の最小値が2以下である確率 目の最小値が2である確率 となり, 計算が大変。 2以下の目が1回 2回 3回出る場合の確率を考え,それらの和を求めればよいのだが、 THINKING 「~以下」 には 余事象の確率 ~以上」 最小値が2以下となるのはどのような場合があるかを調べてみよう。 CHART 問題文は「3回のうち少なくとも1回は2以下の目が出ればよい」 といい換えることが 実際に計算すると, できるから、余事象の確率が利用できそうだと考えるとよい。 出る目がすべて2以上ならよいのだろうか? (2) 最小値が2となるのはどのようなときだろうか? 右の図のように、出る目がすべて2以上, すなわち最小値が 以上の場合には,最小値が2でない場合が含まれているこ とがわかる。 3回のうち少なくとも1回は2の目が出なければならない から、余事象の確率が利用できないだろうか? Ci×2×42+3C2×23×4+2 63 最小値が3以上」 であるから, A の起こる確率は 43 P(A) = 6³3 = (4) ³ = 27 8 - よって, 求める確率は 8 P(A)=1-P(A)=1- 19 27 27 CORNE 1個のさいころを繰り返し3回投げるとき, 目の出方は 63 TRON SHA (1) A: 「目の最小値が2以下」 とすると, 余事象Aは「目の 考えても同じこと。 (2) 目の最小値が2以上である確率は よって, (1) から, 求める確率は 1258 61 216 27 216 = (2) 125 63 216 最小値が 2以上 最小値が 3以上 最小値が2 inf 「3個のさいころを同 時に投げる」 ときの確率と 事象と確率の基本性質 3以上の目は、3,4,5, 6の4通り。 3回とも2以上 6以下の 目が出る確率。 PRACTICE 42 ③ 3 UNSHBANC To 1個のさいころを繰り返し3回投げるとき,次の確率を求めよ。 (1) 目の最大値が6である確率 ← (最小値が2以上の確率) - (最小値が3以上の確 率) (2) 目の最大値が4である確率

回答募集中 回答数: 0
数学 高校生

39.1.2.3 記述に問題ないですかね??

ずつ が起 大] なる。 項 0 し、 り、 え K 基本例題 39 じゃんけんと確率 (1) 2人でじゃんけんを1回するとき, 勝負が決まる確率を求めよ。 (2) 3人でじゃんけんを1回するとき, ただ1人の勝者が決まる確率を求めよ。 (3) 4人でじゃんけんを1回するとき, あいこになる確率を求めよ。 3人から1人を選ぶから 指針 じゃんけんの確率の問題では, 「誰が」と「どの手」に注目する。 3通り 「グー」, 「チョキ」 「パー」 の3通り 「全員の手が同じ」 か 「3種類の手がすべて出ている」 場合があ る。 よって、 手の出し方の総数は,これらの場合の数の和になる。 (2)誰がただ1人の勝者か どの手で勝つか (3) あいこになる 解答 (1) 2人の手の出し方の総数は 329(通り) 1回で勝負が決まる場合, 勝者の決まり方は 0 2通り そのおのおのに対して, 勝ち方がグーチョキ,パーの3通 りある。 よって, 求める確率は 2×3 2 9 3 UN PROY 別解 勝負が決まらない場合は、 2人が同じ手を出したときの 3通りあるから、求める確率は 1-23-2323 9 (2) 3人の手の出し方の総数は 3327(通り) 1回で勝負が決まる場合, 勝者の決まり方は 3C1=3(通り) そのおのおのに対して、勝ち方がグーチョキ,パーの3通 りある。 よって、求める確率は 1 3×3 27 3 (3) 4人の手の出し方の総数は あいこになる場合は,次の [1], [1] 手の出し方が1種類のとき [2] 手の出し方が3種類のとき (グーグー, チョキ, パー}, {ゲー, チョキ, チョキ, パー}, {ダー, チョキ, パー, パー}の3つの場合がある。 4! よって、求める確率は 34=81(通り) [2] のどちらかである。 3通り 出す人を区別すると,どの場合も 2! 全部で 4! ×3=36 (通り) 2! 3+36 81 ist? 13 通りずつあるから, 27 がじゃんけんを1回するとき, 次の確率を求めよ。 (2) 2人が勝つ確率 00000 基本38 1人の手の出し方が3通り, 2人でじゃんけんをするか 5 3×3通り 後で学ぶ余事象の確率 (p.367) による考え方。 1人の手の出し方が3通り, 3人でじゃんけんをするか ら 3×3×3 通り < 3×3×3×3通り 4人全員が 「グー」または 「チョキ」 または 「パー」 例えば { グー, グー, チョキ,パー} で 「グー」 を出す2人を 4人の中から選ぶと考えて 4C2×2!= (通り) 4! 2! (3) あいこになる確率 361 2章 6 事象と確率

解決済み 回答数: 1
数学 高校生

45.2はk=1,2,3,4の場合について1つずつ書いていて、 k=1とk=2が同時に起こることはありません。 46.2もAかつBの余事象とAの余事象かつBが 同時に起こることはありません。 しかし、46.2では「互いに排反より」とあるのに対し 45.2では書いていません。... 続きを読む

368 00000 基本例題 45 和事象・余事象の確率 あるパーティーに、A.B.C.Dの4人が1個ずつプレゼントを持って集まった。 これらのプレゼントを一度集めてから無作為に分配することにする。 (1) AまたはBが自分のプレゼントを受け取る確率を求めよ。 (2) 自分が持ってきたプレゼントを受け取る人数がん人である確率をP(k) とす る。 P(0), P(1), P(2), P(3), P(4) をそれぞれ求めよ。 指針▷ (1) A,Bが自分のプレゼントを受け取る事象をそれぞれA,Bとして> 和事象の確率 P (AUB)=P(A)+P(B) -P (A∩B) を利用する。 (2) P(0) が一番求めにくいので,まず, P(1) P (4) を求める。 そして, 最後にP(0) を P(0)+P(1)+P(2)+P(3)+P(4)=1 (確率の総和は1) を利用して求める。 解答 (1) プレゼントの受け取り方の総数は 4! 通り A,Bが自分のプレゼントを受け取る事象をそれぞれ A, B とすると 求める確率は P(AUB)=P(A)+P(B)-P(A∩B) 3! 3! 2! 6 6 2 5 + 4! 4! 4! 24 24 + 24 12 品 (2) [1] k=4のとき, 全員が自分のプレゼントを受け取るか 1_1 ら1通り。 よって P(4)=- 4! 24 [2] k=3となることは起こらないから P(3)=0 [3] k=2のとき, 例えばAとBが自分のプレゼントを受 け取るとすると, C, D はそれぞれD, Cのプレゼントを 受け取ることになるから1通り。 よって P(2)=5 4C2×1_1 4! [4] k=1のとき, 例えばAが自分のプレゼントを受け取る とすると, B, C, D はそれぞれ順にC, D, B または D, B,Cのプレゼントを受け取る2通りがあるから P(1)= 11=1/1 4C₁X2 1 4! 3 基本43.44 [1]~[4] から P(0)=1-{P(1)+P(2)+P(3)+P(4)} =1-(1/3+1/+1/4)=1/08 4個のプレゼントを1列に 並べて, A から順に受け取 ると考える。 A の場合の数は, 並び □□□の3つの□に, B,C,D のプレゼントを 並べる方法で, 3!通り。 3人が自分のプレゼントを 受け取るなら、残り1人も 必ず自分のプレゼントを受 け取る。 $373 [S<X] AL 自分のプレゼントを受け取 る2人の選び方は2通り。 (検討 P (0) の場合の数は4人の 完全順列 (p.318) の数である から 9通り 9 よってP(0)=1/12/1=12123 練習 1から200までの整数が1つずつ記入された 200本のくじがある。 これから1本 A ③45 を引くとき,それに記入された数が2の倍数でもなく、 3の倍数でもない確率を求 めよ。 [[]] (371 EX36 重要 例題 46 確率の基本計算と和事象の確率 2つのさいころを同時に投げる試行を考える。 Aは少なくとも1つの目が出る 00000 事象,Bは出た目の和が偶数となる事象とする。 (1) 次のそれぞれの事象が起こる確率を求めよ。 [2] A∩B [1] A [3] AUB [4] ANB (2) A,Bのどちらか一方だけが起こる確率を求めよ。 指針 全事象Uは,右図のように、互いに排反な4つの事象 ANB, ANB, ANB, ANB に分けられる(p.304 参照)。 (1) [3] P(AUB)=P(A)+P(B)-P(A∩B) [4] P(A∩B)=P(A)-P(A∩B) [5] P(A∩B)=P(B)-P(A∩B) を利用。 (2) A,Bのどちらか一方だけが起こるという事象は, ANBまたはA∩B(互いに排反) で表される。 11 3.3+3.3 5 24 2 + 62 36 36 3 36 [4] P(A∩B)=P(A)=P(A∩B)= 11 5 6 36 36 36 3.3+3.3 62 5 13 [5] P(A∩B)=P(B)-P(A∩B)= 36 36 (2)_Aだけが起こる事象は ANE,Bだけが起こる事象は A∩B であり、 事象 ANB と AnBは互いに排反であるから (1) より P(A∩B) (A∩B))=P(A∩B)+P(A∩B) 613_19 + 36 36 36 解答 (1) [1] A の余事象 A は, さいころの目が2つとも6でない | 少なくとも には余事象が近道 事象であるから P(A)=1-P(A)=1- 52 11 62 36 [2] 少なくとも1つが6の目で 出た目の和が偶数となる 場合には, (26) (46) (62) (64) (66)の5通 りがあるから P(A∩B)= [3] P(AUB)=P(A)+P(B)-P(A∩B) 5 5 62 36 ラブ)の種類が異なるという事象をBとする。 (1) 次のそれぞれの事象が起こる確率を求めよ。 [1] AUB [2] ANB (㎝) [5] AnB 1 6 確率を求めよ。 基本43.44 B. ANB ANB ANB A∩Bの要素を数え上げる 方針。 B ANB (検討 指針の図を,次のように表す こともある。 -ACA A∩B A∩B B A∩B ANB 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき, 少なくとも ③46 1枚がハートであるという事象をA, 2枚の絵柄 (スペード, ハート, ダイヤ, ク (2)はP(A∩B)+P(A∩B) =P(AUB)-P(A∩B) [3] AnB から求めてもよい。 確率の加法定理 < (1) [4], [5] の結果を利用。 369 2章 7 確率の基本性質

未解決 回答数: 1
数学 高校生

空欄ア/イのところで質問です。 解答のマーカー部がよく分かりません。 4球すべて箱A,Bに入るのならば、ゲームは終了するのではないのですか?どなたかお願いします🙇‍♀️🙇‍♀️

数学Ⅰ・数学A 第3問 (選択問題) (配点20) りの入り方 球と箱を使った次のゲームを行う。 ただし、 球も箱もすべて異なるとし,球の個 数は箱の個数より多いものとする。また, ゲームを始める前は箱はすべて空とする。 ゲーム 用意された箱に、用意されたすべての球をでたらめに入れる。 その結果, 一つでも空の箱があった場合は、 球をすべて取り出して、再び箱 に球をでたらめに入れる。また、 すべての箱に少なくとも1個ずつ球が入っ た場合はゲームを終了する。 (1) 4個の球と二つの箱が用意されたとする。 らも空 1 9 16 第3問~第5問は、いずれか2問を選択し、 解答しなさい。 (i) 1回目でゲームが終了しない確率は ゲームが終了する確率は オ カキ ウ I ずつ入っている条件付き確率は の解答群 ⑩ <p <ps ③pip2=ps ⑥ pip2=p3 ア ク イ である。 また, 1回目でゲームが終了したとき、二つの箱に球が2個 ケ CCCO □口 であり、2回目でゲームが終了する確率は 4×3 1+ 4P1 4P2+4Pi+ である。 したがって, 1回目で HEY である。 (iiを1から3までの整数とし,回目でゲームが終了したとき,回目に二つ の箱に球が2個ずつ入っている条件付き確率を考える。 このとき、 確率 1, P2, P3 の大小関係は, コ である。 2127 Ces P₁>P2> P3 ④ pip<ps ②pip2=ps ⑤pip2>p3 (数学Ⅰ・数学A 第3問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

44.2 記述はこれでも大丈夫ですか??

の番 3 女子大] 46 りうる ではな 1 7/2 12 Til を取り 最小 ること 確率は, 8 15 SA 合の確 学園大] 基本 例題 44 余事象の確率 00000 (1) 15個の電球の中に2個の不良品が入っている。 この中から同時に3個の電 球を取り出すとき, 少なくとも1個の不良品が含まれる確率を求めよ。 (2) さいころを3回投げて, 出た目の数全部の積をXとする。 このとき, X>2 となる確率を求めよ。 p.364 基本事項 ⑤5 重要 46 樹針 (1) 「少なくとも」 とあるときは, 余事象を考えるとよい。 「少なくとも1個の不良品が含まれる」の余事象は「3個とも不良品でない」であるから, 1・・・・でない確率)により、求める確率が得られる。 (2) 「X2」の場合の数は求めにくい。 そこで,余事象を考える。 A 「X2」の余事象は「X2」 であり, Xはさいころの出た目の積であるから,X=1,2 となる2つの場合の数を考える。 CHART 確率の計算 「少なくとも・・・・・・」 「・・・・・・でない」には余事象が近道 解答 (I) A: 「 少なくとも1個の不良品が含まれる」 とすると,余事 象Aは「3個とも不良品でない」 であるから, その確率は P(A)=13C322 受 15C3 35 2) 16 410 13 よって 求める確率は P(A)=1-P(A)= 35 園 不良品が1個または2個の場合があり,これらは互いに 13 排反であるから求める確率は 35 2C1 13C2+ 2 C213C1 15C3 15 C3 (2) A: 「X2」 とすると, 余事象A は 「X≦2」 である。 1通り [1] X=1 となる目の出方は,(1,1,1) の [2] X = 2 となる目の出方は, (2,1,1),(1, 2, 1), (1,1,2) の 3通り 目の出方は全体で63 通りであるから,[1],[2] より P(A)= 1 1+3 63 54 よってP(A)=1-P(A)=1 53 13 x 12 x 11 3×2×1 515×71×13 3×2×1 < 「X>2」 の余事象を 「X<2」 と間違えないよう に注意。 > の補集合は である。 事象 [1], [2] は排反。 [(1) 九州産大 ] 44 (1) 5枚のカード A, B, C, D, E を横1列に並べるとき,BがAの隣にならな (2) 赤球4個と白球6個が入っている袋から同時に4個の球を取り出すとき, 取 い確率を求めよ。 り出した4個のうち少なくとも2個が赤球である確率を求めよ。 [ (2) 学習院大 Op.371 EX35 Otress 367 2章 7 確率の基本性質 る る で で る m- 1. 倍数 であ った 約数 立つ。 あるな cを満 には 14234 eni という。

解決済み 回答数: 1