学年

教科

質問の種類

数学 高校生

青線で囲った部分が分からないです。 なぜこの式が線分AQの長さを表すのですか? 回答よろしくお願いします!

214 第4章 微分法の応用 18 曲線 C:y=e* 上の異なる2点A(a, e), P(t, e') におけるCのそれぞれの法線の交点 ものとして、親分AQの長さをL() で表す.さらに,r(a) = lim Lat)と定義等の (1) r(a)を求めよ. (2) aが実数全体を動くとき, r(a) の最小値を求めよ。」 <考え方> (1) Qのx座標を求め, (Qのx座標) - α と直線AQ の傾きから, La (t) を求める (2) 文字のおき換えを考え、定義域に注意しながら計算する. (1) y=e" より,y'=e 曲線 y=e' 上の点A(a, e), P(t, e') における法線 の方程式はそれぞれ, +x)-( y-e²=-(x-a) - (+2) y-e'=-(x−t) ......2+) y=f(x) 上の点(α f(a)) における法線の方程式 y-f(a)=-ƒ (a)(x0) (十五十 (f(a)\0 のとき) ①②よりyを消去して,交点Qのx座標を求めると e'-e=(x-1)-(x-a) ee' (e'-e")=eª(x− t)- e'(x-a) (e-e)x=ae'-te- e'e' (e'-e") ae'-te x= e'-eª したがって, eª e 40-2 mil mil(a)ail 1+ kt at より,ピーピ≠ 0 L(t)=√1+(-1)(a-te-ee-a 0 y=mx+n = 1+ 1-e(t-a) 20 e-ea eet e2a ea. iteel e2a+1 t-a e-e ここで,f(t)=e' とおくと, f'(t)=e' t-at-a lim e'-e² = f'(a)=eª よって, Ile² + e²e mil r(a)=limL.(t)=√++ee 2a 220+1 − 1 + 2² | = (1 + e²) = 1, 3 C ea ea (2)u=eze,g(u)={r(a)}^ とおくと,u>0で g(u)=- (1+e)_(1+u) 3 u g'(u)=3(1+u)²u=(1+u)³ _ (1+u)²(2u−1) u +10 √1+m² m llim ( t-a 1 1-a e-e 1+e>0 r(a)>0より,g(u)が最小 となるとき(a) も最小と 0 なる. 大 u² g^(u)=0 とすると,“>0より, u= 12 g(u) の増減表は右のよう になる. u=1のとき,g(u)は U 0 ... : g'(u) 27 4 最小値をとり、このと g(u) 1 + 27 12024 7 12a=log_ a=- -=- =-1210g2 -log2 より

解決済み 回答数: 1
数学 高校生

第5問の(1)がわかりません、、 教えてください🙇‍♀️

ck, w+y=uk と表されるね。 - ら、整数kを用いて、 2x=du+vk, 2y=uk-dv となるよ。 4N=d2+k2)(u2+2)が成り立つね。 ■ 平方数の和を次の3つのタイプに分類してみることに (奇数)+(奇数)2, つまり、奇数の2乗どうしの和 (偶数)+(偶数)2, つまり、偶数の2乗どうしの和 (偶数)2 + (奇数) 2, つまり, 偶数の2乗と奇数の2乗の 一方数を4で割ると、余りはシ 方数を4で割ると、余りはス 方数を4で割ると, 余りはセ セである。 第5問 (選択問題) (配点 20) 共通テスト 実戦創作問題 数学Ⅰ・数学A 23 太郎さんと花子さんはチェバの定理を最近学習した。以下は、職員室での太郎 さん,花子さん, 先生の3人の会話である。会話を読んで、下の問いに答えよ。 太郎: チェバの定理とは、三角形ABC とその内部の点Pについて 直線 BCと直線AP との交点を A',直線CA と直線 BP との交点をB', 直線AB と直線 CP との交点をCとするとき AC BA' CB' × × =1 C'B A'C B'A が成り立つというものでした。 花子:そうですね。 ACA C'B ア BA' A'C CB' イ ウ B'A が成り立つので,これらをかけあわせれば証明できます。 太郎:面積を考えるというのがポイントでしたね。 x2+y^ と z2+ w²は同じタイプであるはずであり,yとr が等しいとしても一般性は失われないね。 これ以降は,yとwの偶奇が等しいとして議論しよう。 とこの偶奇も等しくなりはソkはタ ニから,Nが素数でないことがいえるね。 さらに、Nの つける方法も与えてくれているよ。 タについては、最も適当なものを次の①のうち ただし、同じものを繰り返し選んでもよい。 ア (1) ウ については、最も適当なものを、次の①~③のうちから 一つずつ選べ。 (5) △PAB APBC △PBC' △PA'B ① APBC APAB APBC △PAC APAC APAC (3 APBC APA'C APB'C △PA'C APAC APAB (6) ⑦ (8 APA'C APB'C APAB APAC 先生: 授業のときには紹介しなかったが、このチェバの定理には、様々な拡 張や変種が考えられているんだよ。今日は、そのうちの二つを紹介し よう。 花子: それは興味深いです。 先生: まずはじめは,三角形でなくても、五角形や七角形などの角の個数が

解決済み 回答数: 1