数学
高校生
解決済み

第5問の(1)がわかりません、、
教えてください🙇‍♀️

ck, w+y=uk と表されるね。 - ら、整数kを用いて、 2x=du+vk, 2y=uk-dv となるよ。 4N=d2+k2)(u2+2)が成り立つね。 ■ 平方数の和を次の3つのタイプに分類してみることに (奇数)+(奇数)2, つまり、奇数の2乗どうしの和 (偶数)+(偶数)2, つまり、偶数の2乗どうしの和 (偶数)2 + (奇数) 2, つまり, 偶数の2乗と奇数の2乗の 一方数を4で割ると、余りはシ 方数を4で割ると、余りはス 方数を4で割ると, 余りはセ セである。 第5問 (選択問題) (配点 20) 共通テスト 実戦創作問題 数学Ⅰ・数学A 23 太郎さんと花子さんはチェバの定理を最近学習した。以下は、職員室での太郎 さん,花子さん, 先生の3人の会話である。会話を読んで、下の問いに答えよ。 太郎: チェバの定理とは、三角形ABC とその内部の点Pについて 直線 BCと直線AP との交点を A',直線CA と直線 BP との交点をB', 直線AB と直線 CP との交点をCとするとき AC BA' CB' × × =1 C'B A'C B'A が成り立つというものでした。 花子:そうですね。 ACA C'B ア BA' A'C CB' イ ウ B'A が成り立つので,これらをかけあわせれば証明できます。 太郎:面積を考えるというのがポイントでしたね。 x2+y^ と z2+ w²は同じタイプであるはずであり,yとr が等しいとしても一般性は失われないね。 これ以降は,yとwの偶奇が等しいとして議論しよう。 とこの偶奇も等しくなりはソkはタ ニから,Nが素数でないことがいえるね。 さらに、Nの つける方法も与えてくれているよ。 タについては、最も適当なものを次の①のうち ただし、同じものを繰り返し選んでもよい。 ア (1) ウ については、最も適当なものを、次の①~③のうちから 一つずつ選べ。 (5) △PAB APBC △PBC' △PA'B ① APBC APAB APBC △PAC APAC APAC (3 APBC APA'C APB'C △PA'C APAC APAB (6) ⑦ (8 APA'C APB'C APAB APAC 先生: 授業のときには紹介しなかったが、このチェバの定理には、様々な拡 張や変種が考えられているんだよ。今日は、そのうちの二つを紹介し よう。 花子: それは興味深いです。 先生: まずはじめは,三角形でなくても、五角形や七角形などの角の個数が

回答

✨ ベストアンサー ✨

https://manabitimes.jp/math/656

ちょっと説明が難しいので

サイトのチェバの定理の証明を見てみてください

ゆめら

サイトわざわざありがとうございます😭
理解しました!

この回答にコメントする
疑問は解決しましたか?