学年

教科

質問の種類

数学 高校生

(2)です なぜこのように4つ場合分けをするのかわかりません

DO 123 重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 次の関数のグラスをかけ。 (1) y=f(x) (2y=f(f(x)) 指針 2x (0≦x<2) f(x) = 8-2x (2≦x≦4) 利用する け。 3歳 章 ⑧関数とグラフ 定義域によって式が変わる関数では,変わる境目のx, yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で、 f(x) <2のとき 2f(x), 2f(x) 4のとき 8-2f(x) (1) のグラフにおいて, f(x) <2となるxの範囲と, 2f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 解答 (2f(x) (2) f(f(x))= [8-2f(x) よって, (1) のグラフから (0≦f(x)<2) (2≦f(x)≦4) 0≦x<1のとき f(f(x)) =2f(x)=2.2x=4x FI 1≦x<2のとき f(f(x)) =8-2f(x)=8-2.2x =8-4x 0+ 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=2(8-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) y 4 2 (2) A. M. 1 2 3 4 0 1 2 3 4 変域ごとにグラフをかく。 < (1) のグラフから, f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦なら f(x)=8-2x のように, 2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 一考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 YA 8から2倍を 引く 4 [2]f(x) が2以上4以下なら, 8から2倍を引く。 右の図で, 黒の太線 細線部分がy=f(x), 赤の実線部分が =f(f(x)) のグラフである。] なお,f(f(x)) f(x) f(x) の 一成関数といい, (fof) (x) と書く(詳しくは数学Ⅲで学ぶ)。 4 x 2倍する ■ 関数f(x) (0≦x< 1) を右のように定義するとき, 次の関数のグラフをかけ。 2x (0≦x<1/21) f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 -1 (12/1)

解決済み 回答数: 1
数学 高校生

1の場合だけ,判別式を使える理由を教えてください

重要 例題 104 物 放物線y=x2+αと円x2+y^2=9について,次のものを求めよ。 (1)この放物線と円が接するとき,定数αの値 (2) 異なる4個の交点をもつような定数αの値の範囲 の 0000 指針 放物線と円の共有点についても,これまで学習した方針 共有点 実数解 接点⇔重解 で考えればよい。 解答 x2=y-a これをx2+y2=9に代入して よって y2+y-a-9=0 ...... ここで,x2+y2=9から [1] 放物線と円が2点 で接する場合 37 この問題では,xを消去して, yの2次方程式(y-a)+y2=9の 実数解 重解を考える。 放物線の頂点はy軸上にあることにも 注意。 (1) 放物線と円が 接する とは,円と放物線が共通の接線をも つことである。この問題では, 右の図のように, 2点で接する 場合と1点で接する場合がある。 (2) 放物線を上下に動かし, (1) の結果も利用して条件を満たす。 αの値の範囲を見極める。 (1)y=x2+α から 1点で 接する 2点で接する 消去すると、yの (y-a)+y2=9+2次方程式が導かれる。 ① x²=9-y²≥000 -3≤y≤3 ****** [1] a=- 4 [2] a=-3 a=3 y 2次方程式 ①②の 範囲にある重解をもつ。 よって, ① の判別式を Dとすると D=0 3 3 3- -3 13 O 0 x -3 13 x -3 0 -3 D=12-4.1 (-a-9) 37 =4a+37 であるから =37 a=- このとき、①の解は y=- [2] 放物線と円が1点で接する場合 以上から 図から,点 (0, 3), (0, -3) で接する場合 4a+37=0 すなわち -12となり、②を満たす。 2次方程式 py2+gy+r=0 解け 37 4

解決済み 回答数: 1
数学 高校生

なぜこのように変形できるのですか?

184 重要 例題 116 反転 OP・OQ=(一定) の軌跡 0000 |xy平面の原点を0とする。 xy 平面上の0と異なる点Pに対し, 直線 OP」 点 Q を,次の条件 (A), (B) を満たすようにとる。 (A) OP・OQ=4 |点Pが直線x=1上を動くとき, 点 Q の軌跡を求めて、図示せよ。 【類 大阪市 (B) Q は, 0 に関して Pと同じ側にある。 指針 求めるのは,点Pに連動して動く点Qの軌跡。 基本1 連動形の軌跡 つなぎの文字を消去して,x,yの関係式を導く P(X, Y), Q(x, y) とすると, 2点P Qの関係は 点Qが半直線 OP 上にあるX=tx, Y=ty となる正の実数が存在する このことと条件(A) から, tを消去して, X, Y を x, yの式で表す。 そして、点Pに関 する条件 X=1より, x,yの関係式が得られる。 なお, 除外点に注意。 参 ※質 点 Q の座標を (x, y) とし、点Pの座標を (X, Y) とする。 解答 Qは直線OP 上の点であるから Q(x, y) P(X, Y) X=tx, Y=ty (t は実数) √x2+y2(x)2+(ty)" =4 ただし,点Pは原点と異なるから t=0, (x, y) = (0, 0) 更に, (B) から, t> 0 である。 (A)から 4 ゆえに t(x2+y2)=4 よって t=- かから したがって X=- 4x x2+y2, Y=- x²+ye 22を消去する。 (19)A 4x (−1)=0 点Pは直線x=1上を動くから x2+ye =1(S)AX=1 に X=- 4x x+y ゆえに x2+y2-4x=0 y よって (x-2)'+y2=4 0-(1-)+1 代入する。こう したがって, 求める軌跡は 中心が点 (2,0), 半径が20円。 0 12 ただし, (x,y) ≠ (0, 0) である から, 原点は除く。 -2- ☆注意 本間は、反転の 図示すると、 右図のようになる。(0) (=g=x である。反転について

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1
数学 高校生

2番は直ぐに-1と出しちゃダメなんですか?

(1) 不等式α(x+1)> x+αを解け。ただし,αは定数とする。多く (2) 不等式 ax<4-2x<2xの解が1 <x<4であるとき,定数αの値を求めよ。 [(2) 類 駒澤大 ] ・基本 34 重要 99 指針 文字を含む1次不等式 (Ax>B, Ax <B など) を解くときは,次のことに注意。 ←一般に,「0 で割る」と •A=0 のときは,両辺を4で割ることができない。 ・4<0 のときは、両辺を4で割ると不等号の向きが変わる。 いうことは考えない。 (1) (a-1)x>a(a-1) と変形し, a-1>0, a1=0, a-1<0の各場合に分けて解く。 と同じ意味。 (2) ax<4-2x<2xは連立不等式 ax <4-2x 4-2x<2x (B) まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ! (a-1)x>a(a-1) (1) 与式から (1) 解答 [1] α-1>0 すなわちα>1のとき x>a >x [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x>0 [3] α-1<0 すなわち α <1のとき α>1のとき x>a, x<a よって a=1のとき 解はない, α <1のとき x<a (2) 4-2x<2x から -4x <-4 は まず, Ax>Bの形に。 ①の両辺をα-1 (>0) で割る。 不等号の向きは 変わらない。 <0> 0 は成り立たない。 負の数で割ると不等号 の向きが変わる。 晶検討 よって x>1 A=0のときの不等式 Ax>Bの解 ゆえに,解が1 < x < 4 となるための条件は, ax <4-2x ①から ① の解が x <4 となることである。 (a+2)x < 4 (2) [1] α+2>0 すなわち α> - 2 のとき ②から 4 x< よって a+2 ゆえに 4=4(a+2) よって 4 a+2 a=-1 =4 これはα>-2を満たす。 [2] α+2=0 すなわち α=-2 のとき,②は 0x4 = 0 のとき, 不等式は よって 0x >B B≧0 なら 解はない B<0 なら 解はすべての 実数 両辺にα+2 (≠0) を掛 けて解く。 よって,解はすべての実数となり, 条件は満たされな い。 [3] α+2<0 すなわち α <-2 のとき,②から 4 x> a+2 このとき条件は満たされない。 [1]~[3] から a=-1 04は常に成り立つか ら、 解はすべての実数。 x<4と不等号の向きが 違う。

解決済み 回答数: 1
数学 高校生

この問題の(1)の解説の、√2/√3a²がどうやって√6/3aになったのかがわかりません、、教えてください🙇‍♀️

を 141 基本 例題 138 正四面体の高さと体積 1辺の長さがαである正四面体 ABCD がある。 (この正四面体の高さをαの式で表せ。 (2)この正四面体の体積をαの式で表せ。 CHART & THINKING 空間図形の問題 平面図形 (三角形) を取り出す 0000023 基本137. 重要 139 (1) 頂点Aから底面 BCD に垂線 AH を下ろすと,AH が正四面体の高さとなる。AHを 求めるために、どの三角形を取り出せばよいだろうか? AB=ACAD であることに, まず注目しよう。更に,点HはBCDのどのような位置にあるかを考えよう。 (2) 四面体の体積の公式において, (1) で求めた「高さ」に加えて何を求めればよいかを判断 しよう。 解答 (1) 正四面体の頂点Aから底面 △BCD に垂線AH を下ろすと, AB=AC=AD であるから △ABH=△ACH=△ADH よって BH=CH=DH D B ゆえに、点Hは BCD の外接円の 中心で,外接円の半径はBH である。 よって, BCD において, 正弦定理により 1 a a BH= = 2 sin 60° 3 したがって AH=√AB2-BH= = a². 2 a a A (1) AABH, AACH, △ADH は,斜辺の長さ がαの直角三角形でAH は共通辺である。 直角三角形において, 斜 辺と他の1辺が等しいな らば互いに合同である。 CD sin DBC -=2R CD=α, <DBC=60° △ABHに三平方の定理 を適用。 4章 15 三角形の面積、空間図形への応用 2 √6 = 3 3 a ? B a H (2) BCD の面積は a.a sin 60°- よって、 正四面体 ABCDの体積は √3 = a² 4 4 1/13 = ABCD AH-1√361 /2 a= 3 3 4 12 RACTICE 1383 ABCD の面積 -BD・BCsin∠DBC (四面体の体積 ) =113×(底面積)×(高さ)

解決済み 回答数: 2
数学 高校生

数2の積分の問題です。赤線に書いてある記述なのですが、グラフがとんがってるところは微分できないみたいな話を聞いたことがあるのですがこの場合は微分できる(微分可能?)のでしょうか。今回の場合は微分できるのか、それと微分できる場合とできない場合を教えていただきたいです。回答お願... 続きを読む

406 重要 例 260 面積の最大 最小 (3) 直線で囲まれた2つの部分の面積の和Sが最小になるような形の値を |曲線y=x2-x|と直線 y=mx が異なる3つの共有点をもつとき,この曲線と 00000 [類 山形大 ] 基本 246 24 y 指針 曲線y=x2-x| は, 曲線 y=xx のy < 0 の部分をx 軸に関して対称に折り返したもので、図のようになる。 よって, 曲線 y= | x-x|と直線y=mx が異なる3つの 共有点をもつための条件は、 直線 y=mx が原点を通る ことから 0<< (原点における接線の傾き) である。 ここで, 曲線と直線の原点以外の共有点のx座標をα, b とする。 また、図のように面積 St, S2 を定めると, 面積Sは S=S+S2 と表される。 Si は, 放物線と直線で囲まれた部分の面積であるから, S(xa)(x-3)dx=-1/2 (B-α) 2 ①の公式が利用できる。 9/16 S2は, S(mx(x+x)dx+f(mx-(x-x)}dx を計算しても求められるが、下の 図の赤または黒で塗った部分の面積の和差として考えると,①が利用できるので、 計算がらくになる。 y y + y y 曲線y=|x2-x| は, 図のようになる。 解答 y=-x2+xについて _y'=-2x+1_ よって, 原点における接線の傾きは 1 ゆえに, 曲線と直線が異なる3つの共 有点をもつための条件は 0<m< 1 異なる3つの共有点のx座標は,方程 式|x2-x|=mxの解である。 YA y=|x2-x| m=1. -20+1=1 y=mx 1m=0x mを動かしてか ら判断する。 xx0 すなわち x≦0, 1≦xのとき x-x=mxから 絶対値 場合に分ける 面積 x{x-(1+m)}=0 よって x=0, 1+m xx < 0 すなわち 0<x<1のとき -x2+x=mxから 0<x<1から x{x-(1-m)}=0 x=1-m したがって, 異なる3つの共有点のx座標は x=0, 1-m, 1+m 01であるか ら 1≦1+m (1≦x を満たす) 0<m<1から 0<1-m<1 (0<x<1 を満たす) 練習 ③260 ゆ 0 S

解決済み 回答数: 1
数学 高校生

この問題なんですがどうして n🟰1と2両方証明が必要なんですか?

504 重要 例題 60 n=k, k+1の仮定 解答 nは自然数とする。 2数x, yの和と積が整数ならば, x”+y” は整数であること を証明せよ。2月14 指針 自然数nの問題であるから,数学的帰納法で証明する。 +1 x+y+xy で表そうと考えると x*+1+y+1=(x*+y*)(x+y)-xy(x*~1+yk-1) よって、「x*+y^ は整数」に加え、「x-1+y^-1 は整数」という仮定も必要。 そこで,次の [1], [2] を示す数学的帰納法を利用する。 下の検討も参照。 [1] n=1, 2 のとき成り立つ。 初めに示すことが2つ必要。 [2] n=k, k+1のとき成り立つと仮定すると, n=k+2のときも成り立つ。 仮定にn=k, h+1などの場合がある CHART 数学的帰納法 [1] n=1のとき 出発点も それに応じてn=1,2を証明 x'+y'=x+y, 整数である。 n=2のとき x2+y2=(x+y)2-2xy で, 整数である。 1,2のときの証明 整数の和差・ [2] n=k, k+1のとき, x”+y” が整数である, すなわち, n=k, k+1の仮定 x+yx+y+1 はともに整数であると仮定する。 n=k+2のときを考えると x+2+3+2 = (x+1+y+1)(x+y)=xy(x+y) xC x+y, xy は整数であるから, 仮定により, x+2+yk+2 も整数である。 合 よって, n=k+2のときにもx"+y” は整数である。 [1], [2] から, すべての自然数nについて,x "+y” は整数で ある。 n=2のときの証。 整数の和差積は 注意 [2] の仮定でn=k-1, k とすると, k-1≧1の条件から≧2としなければならな 上の解答でn=k, k+1としたのは, それを避けるためである。 n=k, k+1のときを仮定する数学的帰納法 自然数nに関する命題P(n)について指針の [1] [2]が示されたとすると、

解決済み 回答数: 1