学年

教科

質問の種類

数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0
数学 高校生

軍数列を解く時のコツってなんですか?何からやればいいのか分からないです

1から順に並べた自然数を 12, 34, 5, 6, 7/8, 9, 10, 11, 12, 13, 14, 1516, のように,第n群 (n=1, 2, ...) が2"-1 個の数を含むように分け る. (1) 第n群の最初の数をnで表せ. (2)第n群に含まれる数の総和を求めよ. (3)3000 は第何群の何番目にあるか. 精講 ある規則のある数列に区切りを入れてカタマリを作ってできる群数 列を考えるときは, 「もとの数列で、はじめから数えて第何項目か?」 と考えます。このとき,第n群に入っている項の数を用意し,各群の最後の数 に着目します. 解答 (1) 第 (n-1) 群の最後の数は、はじめから数えて 各群の最後の数が基 (1+2+..+2"-2) 項目 . 準 第 (n-1) 群 2-1-1- 第n 群 ***, 3000, 2"-1 2-1 ここで,2''=2048, 22=4096 だから 2" <3000<212 ∴.n=12 よって, 第12群に含まれている。 第 (n+1) 群 このとき,第11群の最後の数は, 2"-1=2047 だから, 2n 注1.第12群に含まれているとき, 第12群の最初の数に着目すると 3000-2047=953 より, 3000は第12群の953番目にある. 3000-2048と計算しないといけません. 逆にひき算をすると答 がちがってしまいます。 注2 (3) 2行目の 2"-130002"は2" ' 3000≦2"-1 でも、 2-1-1<3000≦2"-1 でもよいのですが,(1)を利用すれば解答の形に なるでしょう。 注3.(1),(2)はnに具体的な数字を入れることによって検算が可能です。 ポイント すなわち, 2-1-1) 項目だからその数字は 2"-1-1 等比数列の和の公式 を用いて計算する よって,第n群の最初の数は (2-1-1)+1=2"-1 (2)(1)より第n群に含まれる数は 初項 2-1 公差 1, 項数 2"-1の等差数列. よって, 求める総和は 11.2"-1{2.2" '+ (2"-1-1)・1} 2 =2"-2(2・2"-'+2"-1-1)=2"(321) 解) 2行目は初項 27-1 主 演習問題 131 もとの数列に規則のある群数列は, I. 第n群に含まれる頃の数を用意し Ⅱ. 各群の最後の数に着目し Ⅲ. はじめから数えて何項目か と考える 1から順に並べた自然数を 1|2, 34, 5, 6|7, 8, 9, 10|11, 12, 13, 14, 15/16,

回答募集中 回答数: 0
数学 高校生

写真見づらくて申し訳ないです。問10だけ解き方がわからないので教えていただきたいです。

18:27 KK 18:27✔ ← R6_15_nurse_mat... @ 回 2 問6~10の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び 解答用紙にマークせよ。 5G Doll 74 A 2次関数f(x)=-2x+2-1.g(x)=-2x+28-1 (a,bは実数) について,xの方程式(x)=0とg(x) = 0 はと もに実数解をもつものとする。 f(x)=0の2つの実数解をα. Bとし, g(x)=0の2つの実数解を するとき、以下の 問に答えよ。 問6 α =βとなるようなαの範囲はどれか。 (1) -2<<-1 (2) -2<a<0 (3) -1<<1 (4) 0<a<2 (5) 上の4つの答えはどれも正しくない。 問7a=Bで,aとBがともに12より大きくなるような範囲はどれか。 (1) -2<<1-17 (2) -1<<1-√7 (5) 上の4つの答えはどれも正しくない。 1-√7 (3) 1-17 <<1+/7 (4) 1+/7 <<1 4 問8 α = B.y=すなわちf(x)=0とg(x)=0がともに解をもち,ayであるようなαの組 (v.b)はどれか。 (1)(1.0) (2) (1.1) (5) 上の4つの答えはどれも正しくない。 (3) (0.1) (4)(1.1) (1) 座標平面上の2つの放物線y=f(x)とy-g(x)の交点が(1, -1)であるとする。 このようなaba <b>について。 との積の値はどれか。 (2)- (5) 上の4つの答えはどれも正しくない。 問10a< 6. <y <B< であるとき, a+bはどの範囲にあるか。 (1)&<a+b (2) B <a+b <お (3) y <a+b <B (4) α <a+by (5) 上の4つの答えはどれも正しくない。 2- 3 問11~15の解答として正しいものを (1)~(5)の中からそれぞれ1つ選び、解答用紙にマークせよ。 平面上に正五角形ABCDE がある。 頂点 A. B, C, D, Eはアルファベット順に反時計回りに配置されているものど はじめに頂点に基石を置く。 そして1個のサイコロを振り、出た目の数だけ碁石を反時計回りに頂点から頂点へ る試行を繰り返す。 ただし、試行によって移動した碁石の位置は、次の試行を行うまで変えないものとする。 例えば、 試行で3の目が出たら、 碁石はA→B→C→Dと進みDに到達する。 また、 最初の試行開始後、 碁石がAに戻って Aを通過したとき、 碁石が1周したものとする。 このとき、1回の試行の結果 石がAまたはBにある確率をα. 1回の試行の結果 蕃石が1周する確率をとする。 Pe を2回繰り返した結果、 碁石が2周する確率を 試行を3回繰り返した結果 碁石がちょうど2周してAにある確率をd とする試行を回した。 03だけが右からしてAにある確定をおとする。このとき はいくら

回答募集中 回答数: 0
数学 高校生

線を引いたところはなぜ普通の分散の計算じゃないんですか?そもそもuがなんなのかがよくわかりません

5-4 データの 377 うえる。 かといって, お小遣い 出題度 平均年齢が30 になった。 次 分散が3で というのは 人数が多い 11 (1)は(和)=(平均値)×(すべての度数)で計算すればいいんですよ ねこ そうだね。 308 基本例 例題 186 仮平均の利用 次の変量xのデータについて, 以下の問いに答えよ。 726,814,798,750,742,766,734,702 0000 (1) y=x-750 とおくことにより, 変量xのデータの平均値x を求めよ。 x-750 (2) u= 8 とおくことにより,変量xのデータの分散を求めよ。 (1)のデータの平均値を とすると, y=x-750 すなわち x=y+750である よって まずyを求める。 (2)x, uのデータの分散をそれぞれ sx2, Su² とすると, sx = 8's² である。よって、 ず変量xの各値に対応する変量uの値を求め, su2 を計算する。 (1) yのデータの平均値をyとすると y= | | (- {(-24)+64+48+0+(-8)+16+(-16)+(-48)}=4 (1)x1(726+..+ x=1/08 (726 としても求められるが 考事項 偏差値 までに学んだ平均値, 標準偏差を用いて求められる健 で、もう一方 解答 ゆえに x=y+750=754 x-750 (2) u= 8 とおくと, u, u2 の値は次のようになる。 答の方が計算がらく x 726 814 798 750 742 766 734 702 計 y -24 64 48 0 -8 16 - 16 -48 32 U -3 8 6 0 -1 2 -2 -6 4 u² 9 64 36 0 1 4 4 36 154 よって, uのデータの分散は PS (uのデータの分散) = 8 154-(1)-76-19 (u2のデータの平均 = (uのデータの平均 ゆえに、xのデータの分散は 値の 82×19=1216 sx=8²² があげられる。 複数教科の試験を受けた場合,平均 が各教科の実力の差を見極めることは難しい。粘 義される。 各教科の実力の差を比較しやすい。 偏差値は、偏差 データの変量xに対し,xの平均値をx ×10 によって得られる y = 50+ x-x Sx 偏差値の平均値は 50,標準偏差は 10 である 入学共通テストや, その前身である大学入試 偏差も発表されている。 それらの値を利用 ] ある生徒の大学入試センター試験の国語 通りであった。 大学入試センター試験得点 国語 (200点) 数学ⅠA (100点) 英語 (200点) 15 8 3教科の偏差値を求めると 150-98.67 国語 50+ 26.83 85-62.08 数学 50+ 21.85 170-118. とも C 均という。 参考上の例題 (1) の 「750」 のように,平均値の計算を簡u=x-x -の x を仮 単にするためにとった値のことを仮平均という。仮平 均を自分で設定する場合, 計算がらくになるようなもの を選ぶ。 具体的には,各データとの差が小さくなる値 (平均値に近いと予想される値)をとるとよい。 英語 50+ 41.06 上の計算から, 得点率で比較す が、偏差値で比較すると, 国語 偏差値を用いることで自分の相対位 正規分布 (詳しくは数学Bで学習) 次の表のようになることが知られて 偏差値 75 70 65

回答募集中 回答数: 0
数学 高校生

194の問題がどうしてもわからないので解説お願いします💦どっちかだけでも大丈夫です!!

例題切り取る線分の長さ 47 直線 x+y-1=0 ①が円 x2+y2=4 ②によって切り取られ ある線分の長さと, 線分の中点の座標を求めよ。 解答 右の図のように、切り取られる線分を AB, 線分 の中点をMとする。 円②の半径は2であるから, △OAB は OA=OB=2 の二等辺三角形であり ∠OMA=90° OM は,円②の中心 (0, 0) 直線 ①の距離で A 12 (2) 2 M -2 O * 2x 2. B |-1| 1 あるから OM= = √12+12 2 よって AM=√OA2-OM2= = 22. /7/14 = = -2 したがって, 求める線分の長さは AB=2AM=√14 答 また、線分の中点M は, 円 ②の中心 (0, 0) から直線 ①に引いた垂線と, 直線 ①との交点である。 この垂線の方程式は y=x ...... ③ ①③を解くとx=1/2x=/12/2 1 よって, 線分の中点の座標は 谷 2 2 [参考] 線分の中点のx座標は,次のようにして求めることもできる。 ①,②からyを消去して 2x²-2x-3=0 第3章 図形と方程式 この方程式の解をα, β とすると,解と係数の関係により α+β=1 α+B_1 線分の両端のx座標はα, βであるから, 線分の中点のx座標は 2 B 194 直線 y=2x+5 が、 次の円によって切り取られる線分の長さを求めよ。 また、その線分の中点の座標を求めよ。 例題 47 *(1)x2+y2=16 (2)(x-3)+(v-1)=25

回答募集中 回答数: 0