学年

教科

質問の種類

数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

解答と取る範囲が違うのですが間違ってますか?

130 00000 基本例題 79 2次関数の最大・最小 (4) aは定数とする。 0≦x≦4における関数f(x)=x2-2ax+3aについて,次のもの を求めよ。 (1) 最大値 指針 関数のグラフ (下に凸の放物線) の軸は直線x=α であるが, a のとる値によって、軸の 置が変わる。 よって, 軸x=α と区間 0≦x≦4の位置関係で,次のように場合を分ける。 (1) 最大 (区間の端) (2) 最小(頂点または区間の端)→軸が区間の左外,内,右外 解答 関数の式を変形すると f(x)=(x-a)^-a²+3a y=f(x)のグラフは下に凸の放物線で, 軸は直線x=a したがって (2) 最小値 したがって 練習 79 (1) 区間 0≦x≦4の中央の値は2である。 [[1] a<2のとき,図 [1] から, x=4で最大値f(4)=16-5αをとる。 [2] a=2のとき, 図 [2] から, x=0, 4で最大値f(0)=f (4) = 6 をとる。 [3] a>2のとき, 図 [3] から, x=0で最大値f(0)=3 をとる。 [1] [3] [2]\ |最小 x=ax= 0x=4 →軸が区間の中央より左,中央,中央より右 い、最大 軸 !!最大 基本 77 最大 x=0x=ax=4 x=0x=2x=4 a<2のとき x=4で最大値16-5a a=2のとき x=0, 4で最大値6 a>2のとき x=0で最大値3a (2) 軸x=α 0≦x≦4の範囲に含まれるかどうかを考える。 [ [4] a <0のとき, 図 [4] から, x=0で最小値f(0)=3a をとる。 [5] 0≦a≦4のとき,図 [5] から,x=αで最小値f(a)=a+3a をとる。 [6] a>4のとき,図 [6] から, x=4で最小値f(4)=16-5αをとる。 [4] 軸] [5] # [6] |軸 最小 x=0 x=ax=4 |x=2|| x=0x=ax=4 最小 基本114 まず,基本形に直す。 a<0のとき x=0で最小値3a 0≦a≦4のとき x=αで最小値-α+3a a>4のとき x=4で最小値16-5a x=0 x=4x=a 30TH aは定数とし,関数y=x2+2(a-1)x (1≦x≦1) について次のものを求めよ。 (1) 最大値 (2) 最小値 〔類 センター試 ズーム 2次 UP ここでは, 場合分け 軸の位置で f(x)=(x-a) 軸は直線x=α の図のように、エ 変わると、軸( き, 区間0≦x≦ 小となる場所が よって, 軸の位 最大値を求 y=f(x)のグラ 大きい (右図を したがって, 軸 イントになる。 等しくなるよう [1] 軸が区間 [軸] x=0x=q x=4の方か 最小値を求 y=f(x)のグラ なる。ゆえに, ときは区間の方 [4] 軸が 軸 区間 x=ax=0

回答募集中 回答数: 0
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0