学年

教科

質問の種類

数学 高校生

3/4-x² がどこを表しているのか分かりません💦

340 基本例題 217 放物線y=x2と円x2+ 両端とする円の2つの弧のうち, 短い弧と放物線で囲まれる図形の面積Sを 求めよ。 CHART & SOLUTION 面積を直接求めるのは難しいため、 図のよ うに、直線と放物線で囲まれた部分の面積 を補助的に考え、三角形や扇形の面積を足 し引きする。 放物線と円の面積 ¹+(y – 5)²=1 ****** 三角形の面積と扇形の面積は公式を,直線 と放物線で囲まれた部分の面積は積分を 用いる。 3 9 16 = -=0 + 1 が異なる2点で接する。 2つの接点を 23 よって (y - 3)² = 0 y=2のとき x=± 2 よって, 放物線と円の共有点の座標は (43.2) (-43, 3) √3 2 4 3√/3-2/3 T 4 2 ∠QRP= 37 であるから また,図のように P, Q, R をとる。 求める面積Sは,図の赤く塗った部 分の面積である。 岡本 ゆえに Q 解答 放物線と円の方程式からxを消去するとy+(y_2 ) 2-1 =1 1 整理すると y²-- R ------ O S y= (3 4 P Q 3/4 √3 2 O PQと放物線 が囲む部分 R 5 4 R 2 . S s = √²/12 ( 8 - x²) x + 1/2 · √ 3 · 1/2 - 1/2 ·1. z π 2 - - (- 1²) (1/³² - (- ~√ ²³ ) ² + 4√³ - 13 √√3 = 2 2 P O 12k y=x2 TH まずは、放物線と円の 有点の座標を求める。 (S(を消去し,yの2次 1--32 R √3 O ARPQ 1 4 形RPQ 式を考える。(p.155 重要 例題 95 参照 ) 23 CHART 絶対値 まず, 絶対 場合の分か (1) x-2 y=xにy=2 x=270 から R 本 例題 218 S₁1x-21 √3 2 (8-(1+))) 21/1/2 高さは RPQの底辺は3 (2) x². foff 円年 (1) & 半径中心角の扇形 の面積は 1/2120 ・和 U

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分が理解出来ません 教えてください🙏

436 数列の和と期待値・分散 重要 例題 55 Nを自然数とする。 大きさが同じ (N+1) 個の球に, 0 からNまでの異なっ た数字をそれぞれ1つずつ書き, 袋に入れておく。 その中から2球同時に り出し、そこに書かれた数字の差を確率変数X とする試行を考える。このと き 次のものを求めよ。 (1) kを1≦k≦N なる自然数とするとき, X = k となる確率 P (X = k) (3) N=4 のとき, Xの分散 V (X) (2) Xの平均E(X) CHART & SOLUTION k, k, k の公式(第1章数列参照) を利用する。 計算の際, N はkに無関係であるから, ZNk=Nk などと変形する。 (1)X=kとなるのは, 2球に書かれた数の組が (0, k), (1,k+1), ……, (N-k,N) の場合である。 よって (2) Xがとりうる値は X=1, 2, 3, ....., N E(X)=Σ{kP(X=k)}=Σ- P(X=k)=N-k+1_2(N-k+1) N+1 C2 よって - k=1 N - Z Ž _N+2 = 3 k=1 P RACTICE 55 y 2{(N+1)k-k2} N (N+1) = N Σk² 2 N(N+1) k 2 2 17/11/N(N+1) - NON+1) 11 -N 2 6 11 ● 26 =15-10=5 N (N+1) k=1 (3) N=4のとき P(X=k)=1/12-10k,E(X)=2 4 ゆえに E(X²¹) = {k²P(X = k)} = (¹/k². 1 -k2. -k3 10 k=1 k=1 N であるから ・4・5・9- |_N(N+1)(2N+1) 10 (12/3・4・5) 2 V(X)=E(X2)-{E(X)}=5-22=1 AS 球の取り出し方は全部 で+1C2 通り。 んに関係しない式を の外に出す。 n k= n(n+1) k=1 Ex 44 A n Σk²³= = n(n+1/2+1) k=1 k=1 +2²=fain+

回答募集中 回答数: 0
数学 高校生

②が分かりません。教えてください🙇‍♂️

236 基本例題 146 箱ひげ図から 右の図は,ある商店の商品Aと商品Bの30日間にわ たる販売数のデータの箱ひげ図である。 この箱ひげ 図から読み取れることとして正しいものを,次の ① ③ からすべて選べ。 ① 商品Aは,商品Bと比べて, 販売数の範囲, 四分 位範囲ともに大きい。 55 ② 商品Aでは販売数が15個以上の日が15日以上 20 あった。 ③ 商品 A,Bともに販売数が10個未満の日があった。 = ③最小値に注目。 個 25 (個) NE OS 20 15 10 HART & SOLUTION 箱ひげ図からデータを読み取る問題 ① 範囲は「最大値一最小値」を, 四分位範囲は 「箱の高さ」 を比較。 (2) 「15日」 「30日の半分」であるから, 中央値 (第2四分位数) に注目。 1000 商品A 商品B OSARAH p.232 基本事項 1 -Wat At 解答 ① 範囲は,商品Aの方が商品Bより大きい。 また, 四分位 (Aの範囲) > 15 範囲も、商品Aの方が商品Bより大きい 15 Bの範囲) よって, ① は正しい。 (Aの四分位範囲)=10 ② 商品Aのデータの中央値は15個より大きいから、販売(Bの四分位範囲)<10 数が 15個以上の日が半数以上, すなわち15日以上あるこ とがわかる。よって、②は正しい。(3 12+ 1) HINA 基 ③ 商品Bのデータの最小値は10個である。 よって,商品 5 (Aのデータ) <25 B は販売数が 10 個未満の日がないから, ③ は正しくない。 10≦(Bのデータ) 25 以上から, 正しいものは ①,②

回答募集中 回答数: 0
数学 高校生

(2)なぜ、まるで囲ったような条件がでてくるのですか?

たす A G 不等式を満たす点の存在範囲 (1) 重要 例題 27 複素数zが|z|≦1を満たすとする。 w=z+2i で表される複素数について (1) 点wの存在範囲を複素数平面上に図示せよ。 (2) 2 の絶対値をr, 偏角を0とするとき, rと0の値の範囲をそれぞれ求めよ。 ただし, 0≦0<2πとする。 基本 21.23 指針 (1) w=z+2iからz=w2iとして、これを|z|≦1に代入。 下の検討も参照。 (2) w=R(cosa+isina) [R>0] として, ドモアブルの定理を利用。 →rはR,0はαで表すことができるから (1) で図示した図形をもとにして,まず R, α のとりうる値の範囲を調べる。 2h fry. Vi b b + 4 1 2 よって 解答 (1) w=z+2iから z=w-2i これを21に代入して |w-2i|≦1 ゆえに,点の全体は, 点2i を中心と する半径1の円の周および内部である。 よって,点の存在範囲は右図の斜 線部分。ただし、境界線を含む (2) WR (cosa+isina) [R>0] とする と よって, 条件から (1) の図から したがって 1≤r≤9 また,右図において OA=2, AB=1,∠ABO= w²=R²(cosa+isina)²=R²(cos 2a+isin 2a) r=R2, 0=2a |i|≤|w|≤|3i| ゆえに 1²≤R²≤3² ∠AOB= π π 6 sas 2 3 WX... ゆえに 4 ゆえに 12/2012/30 π 537 S 2 同様にして 4 よって 1/23 2013/0 -π≤2α≤ 3″ π これは 0≦0<2πを満たす。 <AOC= π 6 検討 不等式 | Z-α|≦r, z-a|≧rの表す不等式 P(z), A(α) とすると, AP= |z-αであるから ① 不等式 | z-α|≦r (r > 0) を満たす点 全体は 点Aを中心とする半径の円の周および内部 ② 不等式|z-α|≧r (r > 0) を満たす点 2 全体は 点Aを中心とする半径rの円の周および外部 である。 (1) AV 0 Xx <P(ω), A (2i) とすると, |w-will を満たす点w は,点Aからの距離が1 以下の点, という意味をも つ。 (bhs (1) の図から, wの絶対値 |w| は, w=3iのとき最大, w=i のとき最小となる。 |w|=R P(z) A(a) ||z-a|≤r O sol C (2) x O 左 B 3:6 1 P(z) 55 A(a). |z-a|zr 1章 4 複素数と図形 x 練習z-21を満たす複素数zに対し, w=z+√2iとする。 点wの存在範囲を 27 複素数平面上に図示せよ。 また の絶対値と偏角の値の範囲を求めよ。ただし、 偏角は 0≦2の範囲で考えよ。 Op.80 EX21

回答募集中 回答数: 0
数学 高校生

要素の個数を正確に求めれません😭 求める過程を教えてください!

00000 重要 例題 10 グループの人数と集合 (3つの集合) 人は人のうち、漁市に行ったことのある人は5人であり市に行けたことのあ 人は13人市に行ったことのある人は30人であった人は市と日市に行 たことのある人はx人, A市と C 市に行ったことのある人は9人, B市とC のある人は3人, A市にもB市にもC市にも行ったことのない人は28人であ 市に行ったことのある人は10人であった。市との市に行った。 基本 3. p.275 STEP UP) った。このとき、xの値を求めよ。 CHART & SOLUTION 集合の応用問題 図をかいて 1 順に求める ② 方程式を作る ②の方針で解く。図において分割される各部分集合の要素の個数をかき込んでいく。 そして、 残った部分の要素の個数をα, bとおいて考える。 全体集合をひとし, A市, B市, C 市に行ったことのある人全体の集合 を,それぞれA, B, C とする。 右の図のように, 要素の個数 α, bを 定めると50 a+(x-3)+3+6=50 b+(x-3)+3+7=13 これらの式を整理すると a+x=44 a+b+x=45 1, 3 ・U (100) a+b+14+(x-3) +7 +6 +3 +28=100 b+x=6 28 b B(13) x-3 ( NUAR BUA DURUM) -A (50) a 3 7 2, ①から a=44-x ②から b=6-x これらを③に代入して整理すると-x+50=45 よって x=5 6 14 C(30) n(ANBNC) #5 個数をかき込んでいく。 n(A)=50 ←n (B) =13 n(U)=100 Smanj な 0. C PRACTICE 10 3 ある高校の生徒140人を対象に, 国語、数学、英語の3教科のそれぞれについて、得 意か否かを調査した。 その結果, 国語が得意な人は86人、数学が得意な人は40人 た。そして,国語と数学がともに得意な人は18人, 国語と英語がともに得意な人は 15 人,国語または英語が得意な人は 101 人, 数学または英語が得意な人は5人い また,どの教科についても得意でない人は20人いた。このとき、3教科のすべてが 意な人は 人であり、3教科中1教科のみ得意な人は人である。[名城

回答募集中 回答数: 0
数学 高校生

(2)線を引いたところから分かりません💦 教えてください😭

=) 基本例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (1) x+y=2 ならば「x≧1 またはy≦1」 (2) ²+626 ならば 「la +6/>1 または |a-6|>3」 CHART & SOLUTION 対偶の利用 命題の真偽とその対偶の真偽は一致することを利用 (1) x+y=2 を満たすx,yの組(x, y) は無数にあるから、直接証明することは困難であ る。 そこで,対偶が真であることを証明し,もとの命題も真である, と証明する。 条件 「x≦1またはy≧1」の否定は 「x>1かつy>1」 (2) 対偶が真であることの証明には,次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならばA'≦B2 (p.118 INFORMATION 参照。) 解答 (1) 与えられた命題の対偶は 「x>1かつy>1」ならば x+y=2 これを証明する。 x>1, y>1 から x+y > 1+1 すなわち x+y >2 よって, x+y=2 であるから, 対偶は真である。 (IN したがって,もとの命題も真である。 員 (2)与えられた命題の対偶は 「|a+b≦1 かつ |a-6≦3」 ならば d² +626 43 これを証明する。 |a+b|≦1,|a-6≦3から (a+b)²≤1², (a−b)² ≤3² (a+b)²+(a−b)² ≤1+9 よって ゆえに よって したがって,もとの命題も真である。 2(a²+6²) ≤10 a²+62≦5 ゆえに, 対偶は真である。 p.76 基本事項 6 r=as+2 POINT 条件の否定条件 p, g の否定を,それぞれ , gで表す。 かかつかまたは g PNQ=PUQ pまたはg かつ PUQ=PnQ ⇒αの対偶は gp <x>a,y>6 ならば x+y>a+b (p.54 不等式の性質) |A|²=A² a+b2≦5 56 から a²+ b² <6 30 79

回答募集中 回答数: 0