学年

教科

質問の種類

数学 高校生

この問題の(2)の解説の下線部がなぜこうなるのか全くわかりません。教えてくださいm(_ _)m

[頻出 ★★☆☆ \3 例題 1164 三角関数の最大・最小 〔4〕・・・ 合成の利用 のときの0の値を求めよ。 D 頻出 (1) 関数 y=sin03 cos) の最大値と最小値, およびそ (2)関数y= 4sin0+3cose (0≧≦T)の最大値と最小値を求めよ。 ESHRON 思考プロセス 加法定理 Sπ ReAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題163 サインとコサインを含む式 0≤ 0 B M (1)y=sin0-√3 cost 合成 ↓ y=2sin0- 3 サインのみの式 S π 3 sin (0) 2 sin (0) S 図で考える 0 (2) 合成すると, αを具体的に求められない。 0 B1x →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 π (1)ysind-√3 cost=2sin (0- 3 OMO より よって 2 したがって 3 ≤0- π 3 VII √3sin(0)≤1 23 -√3 ≤ 2sin(0-4) ≤ 2 O 3 20 -√3 4 -10 11 x √3 3 π π 0- 3 2 8-4 - 1 すなわち 5 すなわち 0 = _2 6 πのとき最大値2 -1 π π 0- 3 3 すなわち 0 0 のとき 最小値√3 3 2 y = 4sin0+3cos0 = 5sin (0+α) とおく。 5 4 ただし, α は cosa= sina 5 π 0 ≤0≤ より 2 π +α sin(1⁄2 + a) ~ ① より 0<a< であり, sinα <sin a≦ata≦ 10= 35 2 ... ・・① を満たす角。 0 4 y 1 1 <3> ---- π 4 3 から ≦sin (0+α) ≦1 5 最 3≤ 5sin(0+a) ≤ 5 kh, y t 最大値 5, 最小値 3 sina ≦ sin (+α) ≦1 +αである -1 0 mai 41x 5 162 曜 164(1) 関数 y=sin-cos (0≧≦)の最大値と最小値,およびそのときの 9 の値を求めよ。 (2)関数y=5sin0 +12cos (0≧≦)の最大値と最小値を求めよ。 (S) 293 p.311 問題164 π 3 である ARC

回答募集中 回答数: 0
数学 高校生

数学、図形と計量の問題です。 花子さんの方(ⅱ)の解答の5行目あたりからの意味がわかりません。どなたか解説お願いします🙇

(ii) 花子さんの求め方について考えてみよう。 △ABCの外接円の半径をR とすると AB=2RX I である。 また BH=2RX オ CH=2R × カ S= 2 BCX BC2 × であるから, BC=BH+CH より R をBC と B C を用いて表すことができる。 よって AB × BC sinB sinB sinC (2) cosBsinC + sin Bcos C である。 I の解答群 sin B ①sinC 1 1 sin B sin C 1 cos B cos C cos B cos C オ の解答群(同じものを繰り返し選んでもよい。) sin B sin C cos C cos B cos C sin Bcos C ③ cos Bsin C cos B sin B sin B sin C ⑦ sin C cos C cos B ⑧ 1 sin B sin C cos Bcosc (2)太郎さんと花子さんは,求めた式の形が異なることを疑問に思った。次の①~③のう ち ① ② の式について正しく記述しているのは キ である。 キ の解答群 ①の式のみ、△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ①②の式のみ,△ABC が鋭角三角形でないときに面積Sを求められないことが ある。 ② ① ② の式ともに, △ABC が鋭角三角形でないときに面積Sを求められない ことがある。 ①と②の式は同値なので,△ABC の形状にかかわらず面積Sを求めることが できる。 3

回答募集中 回答数: 0