学年

教科

質問の種類

数学 高校生

回答(1)の1行目から2行目に行く方法が分かりません教えてください。

例題 C1.58 空間の位置ベクトルと四面体の重心 Q& する. 線分DG1, BG2 の各々を 3:1に内分する点をそれぞれP, 四面体 ABCD について. △ABCの重心をするCDの重心をもっと DA Pas する. (1) 2点P,Qは一致することを示せ. (2) (1) で一致した点を G, △BCD の重心を G′ とするとき, 3点A,G, G′ は一直線上にあることを示せ . 考え方 (1) A(a), B(b),C(c), D (7) として, P, Qの位置ベクトルをそれぞれa,b,c で表し,それらが一致することを示す平(株) (2) AG, AG をそれぞれ a,b,c,d で表し, AG =kAG' となる実数んがあれば A. G, G′ は一直線上にある . 解答 OL (8) Ad, B (6) C(²) D. G. (g). Ga(g2). P(D), QG) とする。 (1) giat 42 Focus a+b+c より、 z_ª+³ª₁_¹ (à +3. ª+b+c)= ¹ (˜a + b + c + a) 3 3+1 4 Py より 同様に, q= 1 ss t よって, p=g より 2点P, Qは一致する. (2) G(g), G'(g)とする. +3.2 a+c+d — (6 + 3, ª + c + ª) — — (a + b + c + ā) = 1/(a (a+b+c+d) == 4 3+1 - -ã=1/(b+c+d-3a) AG=g-d=b -à=²(b +c+ã—3ā) AG=2AG (1 よって, 3点A, G, G′ は一直線上にある. (Gは各項点と対面の重心を結ぶ線分を3:1に内分 Plat する) AG=g_a=a+b+c+a 点の一致 notivstival 4 b+c+d 3 位置ベクトルの一致 注〉 四面体において,頂点と対面の重心を結ぶ4本の 線分は1点Gで交わる.このGを四面体の重心 動という 四面体の対辺の AC,BD の中点を結ぶ線分の中 点も重心G と一致する。 S+VS-XA 有ベクトル 小中 AB = b-a Thin 始点 G′ は△BCD の重心 △ABCの重心 a+b+c 3 ² 15tboil 四面体 ABCD の重心 a+b+c+d 例題 4 上に 「考え方 とすると、 重心をG GA+GB+GC+GD=1 解答

解決済み 回答数: 1
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
数学 高校生

87. なぜ点Bは円と円の接点の位置にあるのですか? (点Aは円Oに内接する△ABCの一点かつ△PABの外接円の接点なので2つの円と交わることがわかるが点Bはわからない。)

基本例題 接弦定理の逆の利用 円Oの外部の点Pからこの円に接線PA, PB を引く。 点Bを通り, PAと平行 CỦA T な直線が円0と再び交わる点をCとする。 (1) ∠PAB=a とするとき, ∠BAC をaを用いて表せ。 (2) 直線 AC は APAB の外接円の接線であることを証明せよ。 方べきの足場を利用し 19 JA (1) 円の外部の1点からその円に引いた2本の接線の長さは等しいことや、接弦定理, 円 平行線の同位角・錯角に注目して,∠PABに等しい角をいくつか見つける。 (2) 接線であることの証明に,次の接弦定理の逆を利用する。 HARE JAA MACEVT Da 円 0の弧AB と半直線 AT が直線AB に関して同じ側にあって ∠ACB=∠BAT ならば、 直線 AT は点Aで円 0 に接する (1) の結果を利用して,∠APB=∠BAC を示す。 解答 (1) PA=PB であるから CHART 接線であることの証明 接弦定理の逆が有効 <PAB=∠PBA=a また, PA//BCであるから ∠ABC=∠PAB=α 29-89-41 P OP-FRON 検討 接弦定理の逆の証明- CONNOR VAR p.436 基本事項 ② ∠APB=180°−2a 接弦定理から 一方,仮定により したがって 更に <ACB=<PAB=a3 B 89./ よって、△ABCにおいて よってP7-3 ∠BAC=180°−2a ∠ACB=∠BAT' ∠ACB=∠BAT <BAT'=∠BAT TTO ARRASA 20 Houttu 74110A & DATA 接線の長さの相等。 C <HOTO DE (2) AAPBにおいて 1① ② から ∠APB=∠BAC したがって, 直線 AC は △PAB の外接円の接線である。 ARの逆 THA SATIATTI Lions 平行線の錯角は等しい 接弦定理 APA-APOTHEE T1=89-A9 とすると、方へ ② APABは二等辺三角形。 THAPATHIA A SATARCINA 点Aを通る円Oの接線AT' を ∠BAT' が弧 AB を含むように引くと, ゆえに, 2直線AT, AT'は一致し, 直線ATは円 0 に接する。 6:09 09:¶ 209 A [1] 890=394 en O85/= PAS PER CONTO 8 ZAKE chumaras B T A > ) [S] B TT 'T' 439 3章 14 円と直線、2つの円の位置関係 ある ある -1 数 ある 2 たと 数に には D るを を つ。 15 Na 13 ni い

未解決 回答数: 0
数学 高校生

この問題がさっぱり分かりません。分かりやすく説明してくれると助かります。答えはところどころ省いているので2枚目に正答を載せておきます。よろしくお願いします!!

例題4 全体集合Uと, その部分集合 A, wn(U)=50, n(A) =36, n(B) = 275/Taka dia である。このとき,"(A∩B)のとりうる値の最大値と最小値を求めよ。 まぁ 22-03 解答 n (A) >n(B) であるから, n (A∩B) が最大値をとるのはA⊃Bのときである。 このとき, ANB=B であり n(An B) = n(B) = 27 n(A)+n(B)>n(U) であるから, n (A∩B) が最小値をとるのは AUBU のときである。 n(AUB) = n(A) + n(B) − n(ANB) め よって XA 52 n (An B) n(An B) = n(A) + n(B) - n(AUB) = 36+27-50=13 最大値 27, 最小値 13 圏 - U こ n (A) + n(B) *n (v) 30425-60 ADB (1) + n(ANB) PASWAT 21 全体集合Uと, その部分集合 A, B について, n(U)=60, n(A)=30, n(B)=25である。 このとき,次の個数のとりうる値の最大値と最小値を求めよ。 AA音楽 4 例題 n (An B) E = (87A)R SA= (SUA) .02=(0)* As Bart (ank)µ¢ EAN B = B n (ANB) = n(B) = 25 (In) (S) n (AUB) n(A)n(B) <n (U) 2534) 最大値→ANB=0のとき n(AUB) = n(A) + n(B) =30+25) 1 = 55 n (A)-n (ANB) AnB = Ø - 30-n (AMB) x Fo2 n (ANB) IF n (AMB) =0 n (AMB) = 25 B このとき最小値 AUB=U n (AMB) = 0 ADB 25. 1.180 x 30 最小値をとる。 25.0 ANE Ang 最大55 ANE SENS A O 30 25 h(A) > n(B) [3) n(AUB) Free n (AUB) = n(A)=30 最少値を のとき 最大値 30 最小値 5 最小 30 £3 917 ADB をとる。

回答募集中 回答数: 0
数学 高校生

80.1 めちゃくちゃ効率が悪いのでこれからは解説の通りに解きますが、余弦経理を用いたこの方法でも証明に問題はないですよね?

D D A' A 音にのばす C C 形の対辺の長さは DACEA) 2辺の長さの和は の長さより大きい TEAT 性質 <e, c<f b+c<d+e+f 基本例題80 三角形の辺と角の大小 (∠C=90°の直角三角形 ABCの辺BC上に,頂点と異なる点Pをとると, AP <ABであることを証明せよ。 (2)線分ABの垂直二等分線ℓに関してAと同じ側にあって,直線AB上にな 1点をPとすると, AP <BP であることを証明せよ。 p.425 基本事項 ② 指針▷三角形において,(辺の大小) (角の大小) が成り立つことを利用する。 (1) AP <AB の代わりに∠B <∠APB を示す。 2つの三角形△ABP と APC に分け て考えるQ (2)(1) と同様に,∠PBA <<PAB を示すことを目指す。 l と線分PB との交点をQとす ると,AQABは二等辺三角形であることに注目。 633ROR THOSES 40 CHART 三角形の辺の長さの比較 角の大小にもち込む 解答 (1) △ABCは∠C=90°の直角三角形 から ZB</C 1 △ABP においてABC ∠APB=∠CAP + <C> <C ∠B << APB (2) B P ① ①② から よって AP<AB (②2)点P,Bはℓ に関して反対側にあるから,線分PB は l ① と交わる。その交点を Q とすると, Q は線分 PB 上にある (P,Bとは異なる)から <PAB> <QAB AQ=BQ また, Q は l上にあるから ゆえに ①② から すなわち よって (2) <QAB=∠QBA ∠QBA < < PAB ∠PBA < ∠PAB AP<BPS (TO)<(C) ATSARA ∠C=90° であるから ∠A<90° ∠B <90° C 80+0T+TA ∠APB は APCの外角。 <∠B<∠C<∠APB から (2) XO+ 検討 三角形の2辺の大小 上の例題 (2) の結果から, △ABCの2辺AB, AC の長さの大小は,辺 BCの垂直二等分線を利用して判定できることがわかる。 つまり 辺BCの垂直二等分線lに関して,点AがBと同じ側にあれば, 炭 <B <∠APB A B P le IM 3 XO coge.3g IP B 42 31 12 三角形の辺と角

未解決 回答数: 1