学年

教科

質問の種類

数学 高校生

積分法の体積の応用が解けなさすぎるんですけどなにかコツはありますか?(>_<) それから、研究例題83なんですけど、 (OB²π-OA²π)×1 だと何がダメなのでしょうか、 それと解答のRのx座標が1-tになる理由も知りたいです 盛りだくさんでごめんなさい💦

51 体積 Ⅱ 解 B 514. xz 平面上の放物線z=1-xをAとする。 次にyz平 面上の放物線z=1-2y2 をBとする。 B を, その頂点 が曲線A上を動くように, 空間内で平行移動させる。 そのときBが描く曲面をSとする。 S と xy平面とで囲 まれる立体の部分をTとする。 (1) 平面 x=t (-1≦t≦1) によるTの断面積をS(t) とするとき, S(t) を tの式で表せ。 (2) 立体の体積V を求めよ。 *515.xyz空間において, 4点O(0, 0, 0), A(1, 0, 1), 研究例題 83 分法 B(0, 1,0), C(0, 0, 1) がある。 線分AB, AC, OB を軸のまわりに1回転して囲まれる立体をTとする。立 立体の体積を求めよ。 xyz空間において, 3点A(0, 1,0),B(1, 1,0), C(0, 1, 1) がある。 ABCを軸のまわりに1回転 するとき, △ABCが通過してできる立体をTとする。 (1) 平面 z=t (0 ≦t≦1) によるTの断面積をS(t) と するとき, S(t) をtの式で表せ。 (2) 立体Tの体積V を求めよ。 (1) 右の図のように点P, Q, R をとると, P(0, 0, t), Q(0, 1, t), R (1-t, 1, t), QR=CQ=1-t より S(t) =π PR-PQ2 = = (2) V-S(t)dt = x(t-1)³ dt V= π 3 =ñ(PR²—PQ²)=7QR² =(1-t)2 =(t-1)2 x 1 B. B P 0 B NOT 0 ~S(t) △PQR は直角三角形。 *516.xyz空間において, yz 平面上の 0≦z≦cosy, sys で表される領域をDとする。 点 (1, 0, 0) を 通り,y軸に平行な直線をl とし, 直線ℓを軸として 領域Dを1回転させるとき, Dが通過してできる立体 →例題83 をTとする。 立体Tの体積Vを求めよ。 研究例題 84 に1回転してできる立体の体積Vを求めよ。 曲線 y=x2-2x と 直線 y=xとで囲まれた部分を、次の回転軸のまわり (1) y 軸 であるから, lim 1/4x0 4x (1) 区間 [x, x+4x] の部分をy軸のまわりに1回転してできる立体の体積 AV は , 4x が十分に小さいとき AV=2πx{x-(x2-2x)}・4x AV_dv dx (2) 直線 y=x -=2πx(3x-x2) また, y=x2-2x と y=x との交点の x座標は , よって, 0, 3 よって, B y=x/ -2πx V= v=S2x (3x-x²)dx= x (x²-2x) y=x2-2x 14x 円柱の側面を開いたもの 3x³. v=Sz(3x − x²) ². 2 dx = 72 | √2 ●扇形の面積をSとすると, 半径r, 弧の長さlのとき, \x+4x =2xx²-x²-3x (2) 区間 [x,x+4x] の部分を直線y=x のまわりに1回転してできる立体の 体積 ⊿V は, ⊿x が十分に小さいとき, 1 AV=π{x-(x2-2x)}2.- ・4x 弧の長さ2mPH であるから, √√2 AVdV 4x-0 4x limi ==7 (3x-x²)² + √2 dx yA PQ x-(x²-2x) 円錐の側面を開いたもの y=x 4xHX 20 517. 研究例題 84 (1)の方法を用いて,次の問題の体積V を求めよ。 (1) 108ページの例題 81 *(2) 109ページの510 111 π 20 l S=r².. = πr². 2лr √3 x xx+4x 2π PH 2A-PQ 例題84 (1) 518. 曲線 y=x² と直線y=xとで囲まれた部分を, 直線 y=xのまわりに1回 転してできる立体の体積Vを、次の2通りの方法で求めよ。 発展* (1) 研究例題 84 (2)の方法 (2) 直線y=xに垂直な断面積を積分する方法 第6章 例題 84 (2)

回答募集中 回答数: 0
数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
数学 高校生

(4で、「(iii)は3人の2つのグループとなり、2!とおりずつ同じ乗り方ができるので、、、」と考えられるのでしょうか

乗り物への分乗 題 197 4人乗りの観覧車のゴンドラ2台に6人が分乗する。 次の場合,分乗する方法はそれぞれ何通りあるか. ①1人もゴンドラも区別しないで, 人数の分け方だけを 考える力も持 . 人は区別しないが, ゴンドラは区別する. ゴンドラも人も区別して考える。 「人は区別するが, ゴンドラは区別しない. (1) 6人を定員4人以下の2組に分ける。 (2) (1)において、ゴンドラをA,Bとする. (3) (2)において, A, B に乗る人を決める。 (4) (3)において,同じ乗り方になるものを考える。 (NOTUS 4人の組がAに乗るかBに乗るかで2通り ·8·8·4·3 3人と3人の場合 A, Bいずれも3人ずつなので,1通り よって, 2+1=3(通り) (3) 6人の分け方は,201 (i)Aに4人,Bに2人の場合, mmmm Ocus 合 (1X2X3) ** (1)6=4+2=3+3 より, 6を4以下の2つの 4人と2人,3人と3人の分け方がある。人文 自然数の和に分ける. よって2通り RELEANG2dida {4,2}, {3,3} (2) ゴンドラをA, B と区別すると, 4人と2人の場合 (1 (11 Aに2人, Bに4人の場合, mimmin (111) Aに3人, B に 3人の場合, 20 15+- -=25(通り) 2! GATHEIS HOMTUES JONASSO (4) *** C=15 (通り) 6215 (通り) C320 (通り) よって, 15+15+20=50 (通り) (4) (3)の場合に,ゴンドラの区別をしないとすると、(i) と (i)の乗り方は同じとなる. また,(m)は3人の2つのグループとなり 2! 通りず つ同じ乗り方ができるので、全部で, 353 の2通り、この順 Aが決まれば Bも 決まる。 A 4 3 2 6C4=6C2 和の法則 | 6 - (UM) 201=2×18=55₂ (S) B 2 3 4 の3通り 和の法則 6人からAに乗る 4 人を選ぶので通り. 第6章 残りの2人がBに乗る. 和の法則

回答募集中 回答数: 0