学年

教科

質問の種類

数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1
数学 高校生

この問題の(2)の赤線の部分なのですが、条件付き確率なので公式に入れて求めてみたら値が違うものになりました。多分矢印で書いた方の求め方なのですが、どうしてそうなるのかを教えていただきたいです。

V 基本 例題 53 確率の乗法定理 (1) 00000 当たりくじ4本を含む12本のくじがある。 引いたくじはもとに戻さないも のとして,次の確率を求めよ。 (1) A,Bの2人がこの順に1本ずつ引くとき, AもBも当たる確率 (2) A,B,Cの3人がこの順に1本ずつ引くとき,Cだけがはずれる確率 p.340 基本事項 2 CHART & SOLUTION Hom .... もとに戻さないでくじを引く場合の確率 乗法定理を適用 ・・・・・・ 0 引いたくじはもとに戻さないから,前に引いた人の「当たり」 または 「はずれ」により、次 に引く人の「当たり」 または 「はずれ」 の確率が変わってくる。 解答 A, B, C が当たる事象をそれぞれ A, B, C とする。 ① (1) 求める確率は P(A∩B)=P(A)PA(B) Aが当たる確率 P(A) は P(A)=4 12 Aが当たったとき, 残りのくじは11本で当たりくじ3本 を含むから,条件付き確率 PA (B) は よって PA(B)=- 3 11 P(A∩B)=1/23 = 3 11 11 I C 確率の乗法定理。 当たりくじは3本。 (2) 求める確率は P(A∩BNC)=P(A∩B) PanB (C) 条件付き確率 PanB(C) は, A, B が当たったとして,次に Cがはずれるときの確率であるから 8 PanB (C)=- 10 よって, (1) から ◆ A, B は当たる。 ←このときCは、残りのく じが10本で,当たりく じを2本含むものから くじを引く。 P(A∩B∩C)=P(A∩B)Pana(C)=1/1×20 4 55 P(A∩B)=1/1 INFORMATION 確率の乗法定理の解答について

解決済み 回答数: 1
数学 高校生

cos2分のθを求める問題で、半角の公式を使うところまではできたのですが、cosθをどう変えれば良いのかわからなくなったので教えて欲しいです

213 131 で sing 2倍角、半角、3倍角の公式 のとき, sin 20, cos- 0 3 2' JMART & SOLUTION 半角、3倍角の公式 sil coso, tan の値が基本 sincost, cos20 00000 cos30 の値を求めよ。 p.208 基本事項 31 cos30=-3cos0+4cos' であるから、まず 1+cos = 2 2 求める必要がある。 また, 符号に注意。 π 0 4 ちから cose<0 << cos>0 であるから cos <0 2√2 VI- (1) --2.2 3 3 1/2-2/2)=46/2 3 cost=-√1-sino= == 1- って えに sin20=2sinocos0=2・ 2√2 3 2√2 1- に COS 12 3 3-2√2 6 sin²0+cos20=1 4√2 2倍角の公式 9 40 17 加法定理 2 <B<πより, って COS 82 4 1+cos 0 023 2 -2 πT であるから 2 半角の公式 0 cos >0 の範囲に注意。 √√6 √6 3-2√2/3-2/22-1 6 2√3-√6 6 = cos30=-3cos+4cos'0 FORMATION --3.(2/2) +1(-2,2)-10/2 =-3· 3 √3-2√2 =√(√2-1)2 =√2-1 (2重根号をはずす) 3倍角の公式 忘れたら, 加法定理から \3 27 導く。 p.220 PRACTICE 138 参照。 三角関数の公式を導く 一角関数に関連する2倍角, 半角, 3倍角などの公式はたくさんある。 そのすべてを する必要はない。 元となる加法定理から導けるよう, 導き方を頭に入れておこう。 ■p.224 まとめ 参照) NCTICE 131 sin 30 の値を求めよ。

解決済み 回答数: 1
数学 高校生

少数のグラフはどうやって作るんですか?

462 基本 例題 71 標本平均の確率分布 00000 11,2,2,3の数字を記入した5枚のカードが袋の中にある。これを母集団 とし、無作為に大きさ2の標本X1, X2 を復元抽出する。 標本平均 X の確率 分布を求めよ。 CHART & SOLUTION p.459 基本事項 21 MOITUJO TRANS 標本平均は、標本の選び方によって値が変化する。 大 →標本の大きさを固定すると,標本平均Xは1つの確率変数となる。 確率を求めるときは、 同じ数字のカードは区別することに注意。 X1, X2のとりうる値とそ のときのXの値を表にまとめ、Xのとりうる値と各値をとる確率を調べる。 解答 5枚のカードの数字を 1 1 2 2′', 3 で表すと, 標本 (X1, X2)の選び方は全部で 52=25 (通り)集団 X=Xi+X2 の値を表にすると, 右のようになる。 2 したがって, 標本平均Xの確率分布は,次の表のよ うになる。 111223 1 1' 2 2' 3 1 1 1.5 1.5 2 1' 1 1 1.5 1.5 2 1.5 1.5 2 2 2.5 1.5 1.5 2 2 2.5 3 2 2 2.5 2.5 3 X 1 1.5 2 2.5 3 計 P 4 8 8 4 1 25 25 1 25 25 25 もつもの比 ものの割合を INFORMATION 標本標準偏差 p 母集団から大きさnの標本を無作為に抽出し, 変量xについて, その標本のもつxの 値を X1,X2, ..., Xn とする。 この標本を1組の資料とみなしたとき, その標準偏 S=12(X-X) を 標本標準偏差という。 Vnk=1 この例題において, 標本 (1, 3) の標本標準偏差は S=1/{(1-2)+(3-2)}=1 である。 標本平均 X=1+3=2 2 同時に取りま PRACTICE 71° 母集団 {0, 2, 2, 44, 4, 6 から, 無作為に大きさ2の る。 標本平均Xの確率分布を求めよ。 抽出す

解決済み 回答数: 1
数学 高校生

数学的帰納法で、n=k+1の証明でn=kで仮定した条件を用いて証明してもよいのでしょうか n=k+1で自分は不等式を作り左辺に移項したあと「n=kの仮定より」みたいな感じで証明したのですけどこれが解答として正しいやり方なのか教えてほしいです

基本 例題 47 数学的帰納法と不等式の証明 423 00000 25 を満たす自然数nに対して, 22 が成り立つことを数学的帰納法に よって証明せよ。 CHART & SOLUTION 数学的帰納法 (一般 [1] 出発点は n=1 に限らず [2] n=k の仮定から n=k+1 の証明 この例題では,n≧5 であるから,まず [1] n=1のときの代わりに [1] n=5のとき を出発点とする。 420 基本事項 1. 基本45 また, 不等式 A>B を証明するのであるから, A-B> を示せばよい。 解答 2">n2 ...... ① とする。 [1] n=5のとき (左辺 =25=32, (右辺) =52=25 ゆえに,不等式① は n=5のとき成り立つ。 ① [2] k≧5 として,n=k のとき ①が成り立つと仮定すると ときい)が成り立つと仮定 n=k+1 のとき,①の両辺の差を考えると $50 (= 17 (左辺)=2+1 1章 5 数学的帰納法 2k+1_(k+1)=2.2-(k+2k+1) >2k2-(k+2+1) + (右辺)=(k+1)2 +2.2">2.k² =k2-2k-1=(k-1)^2>05であるから すなわち 2 +1(k+1)2 よって, n=k+1 のときにも不等式①は成り立つ。 [1] [2] から, n≧5を満たすすべての自然数nについて不等 式①は成り立つ。 (k-1)^2はk=5で 最小値 14 (>0) をとる。 INFORMATION 2 と n2の大小関係 関数 y=2*, y=x2 のグラフは右の図のようになる。 このグラフから2">n (n≧5) がわかる。 y. 16- y=x2 これを繰り返すことに、 4F- v=2 O 2 4x

解決済み 回答数: 2