学年

教科

質問の種類

数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0
数学 高校生

同一直線上にないというところから理解ができません。お願いします。

る. このことから,右のようにに、 長さより大きい△ 三角形の2つの辺の和は、残りの辺の長さより大きい という性質を利用することができないか考える m つまり,BD=PD, CE=PE となる △PDE が存在すること を示すことができれば, DE <BD+CE を示せそうである. 右の図のように、線分AM 上で, BM=CM=PM とな るように点Pをとる. 人式の証明 海形の or △BDM と △PDM において, ・成立条件2組の辺とその間の角が, それぞれ等しいので △BDM=△PDM a LA C a<b+c 9 /P E 点P と PD, PE の補助 線を引く. # BMCIA (0) Focus よって, BD=PD ...... ...① ∠DBM = ∠DPM ...... △CEM と △PEM において同様に考えて, △CEM=△PEM ML よって, CE=PE …③ ∠ECM=∠EPM …④ ②④より A A DE <BD+CE 三角形 成立条件:同一直線上 じゃない ∠DPM + ∠EPM= ∠DBM+ ∠ECM +28) = ∠ABC+ ∠ACB する。 3208AA =180°-∠BAC <180° [ + ] よって, 3点D, P, Eは同一直線上にない. したがって, △PDE は存在し,三角形の成立条 件より, DE <PD+PE ①③ 5より、 DE <BD+CE 3点が同一直線上にある とき, DE=BD+CE と なるので,そうならない ことを示しておく. 28 28 A 08 411 STAJ 不等式の満たす意味と同じ図形の性質がないか考える 内 214 (1) A て,辺BCの中点をMとする. -BA Farel 朱

回答募集中 回答数: 0
数学 高校生

解説の波戦引いたところなんでそうなるんですか🙇‍♂️ 引き算やからbの2乗の値によるんじゃないんですか?

〔1〕 関数f(x)=ax2 + bx + c について,y=f(x)のグラフをコンピュータ トを用いて表示させる。ただし、このコンピュータソフトでは、 じゅうぶん は十分に広い範囲で変化させられるものとする。 a. b. 2024年度 数学Ⅰ/本試験 67 (2) 次の操作 A. 操作 B. 操作 Cのうち,いずれか一つの操作を行う。 の部分と1<x<0の部分のそれぞれと交わる, 上に凸の放物線が表示 a,b,c の値をそれぞれ定めたところ, 図1のように, x軸の2くく STAIN 18.0 れた。 $100.0 PORLA BA+ 2008 20 18620 2100.0 操作 A 図1の状態からb.cの値は変えず, aの値だけを減少させる。 操作B 図1の状態からacの値は変えず,bの値だけを減少させる。 操作C 図1の状態からa, bの値は変えず, c の値だけを減少させる。 このとき、 操作 A, 操作 B. 操作 Cのうち 5 「不等式f(x)の解が、すべての実数となること が起こり得る操作は キ また 方程式f(x)=0は異なる二つの正の解をもつこと が起こり得る操作は ク rece.0 腰につ -1 0 2 3 4x ク の解答群 (同じものを繰り返し選んでもよい。) 2020 43112 19:0 2800.0 O ない ① 操作 A だけである 020 0108.0 020 ② 操作 Bだけである 586.0 T0 818.0 ③ 操作 Cだけである ATLA 00000 0002 0 (1) 図1の放物線を表示させる a,b,cの値について 操作 A と操作 Bだけである 0212.0 0 9023.0 ア 0. b 0. C ウ 0. b2-4 ac 0. 4a-2b+cl オ 0. a-b+c 0 ⑤ 操作 A と操作 Cだけである ⑥ 操作 B と操作 Cだけである 操作 A と操作 Bと操作 Cのすべてである である。 900 08.0 ager.o 8182.0 8108.0 0385.0 00 rara.o ア カ の解答群(同じものを繰り返し選んでもよい。) 図 813.0 0 ① COUT 2 08.0 Trot.o

回答募集中 回答数: 0