学年

教科

質問の種類

数学 高校生

印をつけたところの意味がよくわかりません。 どういう考えでこういう式になっているのですか。

Think 例題 236 2 円の位置関係(2) △右の図のように、半径50円 0 と半径1の円O2 が あり、中心間の距離は 012=2 である。 円Cが円Oに内接し, 円 02 に外接しながら動くと 円Cの半径rのとり得る値の範囲を求めよ. き 解答 円Cと円Oの接点と中心C, O. は一直線上にあり, 円 Co- 円Oの接点と中心 C, O2 も一直線上にある . 818-84 これらから, CO15-, CO2=1+r 加えて, 3点C, O1, O2 の位置関 係は, 3点C, O1, O2 が三角形を作 るか,または3点C, O1, O2 が一 直線上に並ぶかである. このことを式で表すと, 練習 236 *** [考え方 題意を満たすように円C を動かしてみると, 円Cの半径が最も大きいときと、最も小さ いときの,3つの円の中心の位置関係が見えてくる. 002=2 ① を代入すると, |CO1-CO2 ≤0102≤CO1+CO₂ RESERVA Focus 円 02 に外接しながら動くとき,04円の半径が最大 円Cが円に内接し, |(5-r)-(1+r) | ≤2≤(5-r)+(1+r) よって, 14-2r|≤2≤6 すなわち, 4-2r|≦2 より, -2≦4-2r≦2 この不等式を解くと, -2≦4-2r から, r≤3 4-2r≦2 から, 1≦r よって, 円Cの半径rのとり得る値の範囲は, 1≤r≤3 201 HO='AA 2億円の性質 475 08 画 円の位置関係は,中心の位置関係に注目する **** 右の図のように、半径160円 0, 半径60円 A, B, 半径 の円Cがある. 3円 A,B,Cは円に内接し, A と B, B と C, C とAは 外接しているとき,の値を求めよ. •C 01 02 円Cの半径が最小 800 1 C 012 +80- 83点 C, O1, O2 につ HO='8 いて、 O2 460 H COL+CO2O102, CO2+O1O2≧CO1, OOCOCO2 |CO-CO2| ≤0102≤CO₁+CO₂ (p.425 参照) .0 •C 第8章

回答募集中 回答数: 0
数学 高校生

印をつけたところの意味がよくわかりません!教えてください

516 第8章 図形の性質 例題252 回転体の体積 1辺の長さが24の正四面体 A-BCD を, 辺ABを軸 として1回転させるとき, △ACD が通過する部分の体 積を求めよ. 考え方 △ACD がABを軸として回転するとどうなるかのイメージ がつかみにくい場合は, ACD を部分的に見てみる.たとえ ば,辺 AC が ABを軸として回転するとどうなるだろうか. さらに、 辺CDの中点をNとしたとき, AN が ABを軸とし て回転するとどうなるか. このように,具体的に考えてみる。 B A C A AB⊥CM AB⊥ DM 議酸よって, AB⊥平面 MCD となり, ABCD 8 N 解答 ABの中点をMとすると, △ABCと△ABD は正三角 形より, B APOKAE したがって, CD 上の任意の点PとAとを結んだ線分 AP を,ABを軸として1回転させると, Aを頂点とする円錐 の側面になる. また, △ABC,△ABD は合同な正三角形より, AMCD はMC=MD の二等辺三角形であるから, CDの中点をN とすると,点Mと辺CD 上の点を結ぶ線分で最も長いもの は MD (MC) , 最も短いものはMN である. 取り SA RAKES 0040UNON 19TE **** B 正四面体であることを考えると,辺AD がAB を軸にして回転すると辺 AC の場合と AB & CC 同じになる このように考えると, △ACD の動く範囲が見えてくる. ここで,上の図のように, CからABに垂線を引いたときの AB との交点とNから ABに垂線を引いたときの交点は一致することを利用する. A N A D * TOBA DA D N AT&SHOWI 平面 MCD は回転軸 垂直な平面である. 点PがCDの中点 になるとき, 考え方 のNの場合になる. ras

回答募集中 回答数: 0
数学 高校生

数列{Pn-1-Pn-2}の一般項を求めるのと 数列{Pn+1-Pn}の一般項を求めるのは同じことですか? (2)のPnを出す際に行き詰まりました。 お助け願います🙏

Che 例題 310 漸化式と確率 (3) BASE **** 数直線上を原点から右(正の向き) に硬貨を投げて進む.表が出れば1 進み,裏が出れば2進むものとする.このようにして,ちょうど点nに到 達する確率をpn で表す.ただし, nは自然数とする. (1) 3以上のnについて, n と D-1 D-2 との関係式を求めよ. (2) (n≧3)を求めよ. 「考え方(1)点nに到達するのは,次の2つの場合が考えられる. ¯¯¯(ii)- (i) (n-1)に到達して、 表が出る. immmmii mmmmm (ii) (-2)に到達して、裏が出る. 解答 Focus - (1) 点nに到達するのは,点(n-1) に到達して表 ++ が出る場合か,点(n-2) に到達して裏が出る場 mmmm in 合である。よって, n≧3のとき, 1_1 m-1--1/7/2 2 2 1 (2) pn=1/21pn-1+1pn-2 を変形して, Þn— --2 Pn+ 1² Pn-1=Pn-1 + 1/ Pn-2 1 2' p= Pn=Pn-1°¯ P₂=- 3 + Pn-2- -pn-1+1/2 pn-2 4 初項 pz-p= = 1,公比 RS だから,数列{bn+1-pn} は, 1/23の等比数列となり, n+1 132 n-1 Pn+1-pn=1 -(-2) ² - ¹ = (-2) ・① 数列{bn+1+1/12/0} は隣り合う項が等しいから n-2 3 Pn+1 + 1/ Pn=D₂ + 1/2 P₁ = ³ + ²2-12- p 4 よって、①,②より, p=//{1-(-1/2)^2} AABOUT βとして n-1 (n-1)+1→n m 特性方程式 (n-2)+2→n(1) 裏 3項間の漸化式 (京都大) →n x² = 1/2x + 7/12/2 -x -(i)- の2解x=- 1 を α, 2' 3 p2=pi + pn-apn-1=B(pn-1-apn-2) に2通りの代入をする. 2 は次のように考える. 1 1 1 点nに到達する1回前の試行に注目して漸化式を作る HOMENS n 1 2 22 2 \ n +1] = 1; = P₂+ = 1 1 Pn+1+₂ Pn=Pn+ 2 Pn-1 +1/201 P₁+ x DE AARDE

回答募集中 回答数: 0
数学 高校生

(2)の解説をお願いします!

, B, C を、 す。) 共通部分 は和集合 なので、 B ■点に注意する。 補集合 ので, (A∩C) っている. 例題145 集合の表し方 (3) OM ** (1) 20 以下の自然数の集合を全体集合ひとして,次のUの部分集合 A, B, C, D の包含関係をいえ. KRA £x 2 全体集合をU={n|nは自然数 1≦x≦6},Uの部分集合を A={a, a-3},B={2, a+2,9-2α} とする. A∩B=Ø, AD2 のとき, αの値を定め, A を求めよ。 考え方 (1) x EP となるxが必ずx∈Qのとき,PCQ となり, PCQ かつ QCP のとき,P=Q となる. A={n|nは3の倍数}, B={n|nは6の倍数}, C={n|nは3の倍数または2の倍数},sshiitaly (3) D={n|nは3の倍数かつ2の倍数} ( 1集合 解答 (1) A={3,6,9,12, 15, 18},B={6, 12, 18} より, BCA ={|nは2の倍数とすると TWIN) & E={2, 4, 6, 8, 10, 12, 14, 16, 18, 20} 卵より、 C=AUEDA 10211 集合D=ANE = {6,12,18}=B よって, B=DCACC まずは,それぞれの集合を要素を書き並べて表す. (2) 与えられた条件に注目する. Focus A∩B=Ø とは, AとBの中に同じ要素があるということ. さらに, AD2 より, その要素は2ではないことがわかる. (2) U={1,2,3,4,5,6} である。 &A={a, a-3}, B={2, a+2, 9-2a} , A∩B={9-2a} a-3<a<a+2, A2 Y. (i) a=9-2a のとき ABI α=3 となり,このとき, 1- dax▶a-3=0 (ii) a-3=9-2α のとき が成り立つa=4 となり, A = {4, 1},B={2, 6,1} は、ともにびの部分集合で, A∩B={1} よって, a=4,A={2,3,5,6} ●x -A- -B、 AUE A- P. ・Q E A={0,3} となるが, UD0 より不適. 素となる。 つまり, a=a+2, α-3キα+2 であり、 2がAの要素でないの で, 9-2α が共通の要 253 Uの要素は1から6ま での自然数 集合の記号 ∈, C, n, u, , Ø, Uは使って覚えよう 第4章 全体集合の中に入って いるか注意する. A∩B キØ の確認 1142 A B (1) (2 14 1

回答募集中 回答数: 0
数学 高校生

なんで右辺の最高次の項が2x^nになるのか分かりません!!

364 第6章 微分法 Think 例題 186 関数の決定 の多項式f(x)の最高次の項の係数は1で, (x-1)f'(x)=2f(x) +81 (S-PR (0)\(\\\ がつねに成り立つ。 このとき f(x) を求めよ. (南山大) [考え方 まず、f(x) の最高次の項のみを考える. また、「つねに成り立つ」とは 「恒等式」ということである。 mimi 解答 f(x) は定数関数にならないから, 最高次の項をx" (nは n-1 自然数)とおくと、 f'(x) の最高次の項は, 1 したがって, 与式の左辺の最高次の項は, 右辺の最高次の項は、 2x" 与式は恒等式であるから, ①,②より, nx"=2x" も恒等 式となる. よって, n=2 STARS これより, f(x)は2次式なので, f(x)=x2+ax+b とお くと,f'(x)=2x+a 与式に代入すると (x-1)(2x+a)=2(x2+ax+b) +8 (a+2)x+(a +2b+8)=0 ③がxについての恒等式であるから、 =a+2=0, a +2b +8=0 (公簿) したがって Focus ( RSD a=-2,b=-3 よって, f(x)=x²-2x-3 a=0+0-01-0-8=(0) 88-0+ (S-)-01-(8-)-8=(3- nxn- N nxn ..... 練習 (1) x 多項式f(r) |100 の 3+601-58- +56=0+501- ***** f(x)=a,x"+......+ax+a (a,0)とおくと, f'(x)=na"x"'++αとなる. 定数関数なら (f'(x)=0 より f(x) = -4 となるか これは意に反する 最高次の項の係数に 1 f(x)をn次式と ると,f'(x) は (n-1) 次式 f(x)が次式(n≧1) ⇒f'(x) は (n-1) 次式 f(x) をn次式として, 最高次の項からnの値を決定する ③がつねに成り立っ どんなの値に ついても③が疲 り立つ 注》例題186 において, f(x) が条件を満たす (最高次の項の係数が1の) 定数関数, つまり, f(x)=1のとき, 与式は, (左辺)=(x-1)0=0, (右辺)=2·1+8=10 となり不適よって, f(x) は条件を満たす定数関数にならない. f(x) は定数関数ではないので、 係数比較は必要十分 性をもつ. JCB) (WY WEST また、例題 186 では 「最高次の項の係数は1」 とあるので「x"」 とおいたが、係数がわ Loor からないときは上のように 「a,x"」 とおくとよい. 例

回答募集中 回答数: 0
数学 高校生

ガウス記号について理解が浅いのですが、写真の赤線の所はなぜマイナスがでてくるんですか?

500 第8章 整数の性質 *** 例題274 ガウス記号 (1)正の実数xを小数で表したとき,次の値をガウス記号を用いて表せ。 (ア) 小数点以下を切り上げた数(イ) 小数第1位を四捨五入した数 (2) [x+y]-[x] - [y] のとり得る値を求め 2つの実数x,yに対して, よ. 考え方 (1) (ア)は, たとえば, 小数点以下を切り上げると2になる数は, 1.1, 1.8, 2 などが当て はまり,1は当てはまらないことから、1<x≦2 を満たす x である. これを一般 の整数nについて考え,ガウス記号の定義を利用する。(イ)も同様。[] 解答(n-1<x≦n (nは整数)のとき,正の実数xの 小数部分を切り上げた数はnとなる. このとき, -n≦x<-n+1 [-x]=-n Focus (OFF(X)= よって, n=-[-x] より,求める数は, 601 -[-x] 830-1 1 (1) n-1/2/2x<n+1/12 (nは整数)のとき,正の実数 (イ) 71. -xの小数第1位を四捨五入した数はnとなる. このとき、n≦x+ +1/12/<n+1より、 =n よって求める数は1/2 Spot =(1-)!! (2) 0≦x<1,0≦β<1 とすると, x=[x]+α, y=[y]+β と表せるので __ x+y=[x]+[y]+a+ß (0≤a+B<2) (i) 0≦a+β<1のとき [x+y]=[x]+[y] (ii) 1≦a+β<2のとき -1 [x+y]=[x]+[y]+1 よって, (i), (i)より, $30 1- [x+y]-[x]-[y]=0, 1 -*=1 ガウス記号の定義を 利用できるように不 等式を整理する. caf10000 Ft ガウス記号については,まず具体的な数で実験する

回答募集中 回答数: 0
数学 高校生

フォーカスゴールドの問題なのですが、問題文の意味から分かりません。解説をお願いしたいです、、。

は、 保 Check 例題 243 互いに素な自然数の個数 力を自然数とする。(m≦nでmとnが互いに素である自然数mの個数 *** をf(n)とするとき,次の問いに答えよ. (1) f(15) を求めよ. (2) f(pg) を求めよ.ただし, b, q は異なる素数とする. (3) f(p) を求めよ。ただし、pは素数,kは自然数とする。(名古屋大・改) 考え方 (1) 15 であるから, f(15) は, 15以下の自然数で15と互いに素,つまり,3の倍 ま数でも5の倍数でもない自然数の個数を表す. (2) は異なる素数であるから、 と互いに素である自然数は,かの倍数でもgの 倍数でもない自然数である. 互いに素である自然数は,かの倍数でない自然数である。 よって (3) 解答 (1) 15=3.5 であるから, 15と互いに素でない自然数, すなわち, 3の倍数または5の倍数であり, 15以下の より、自然数は, 3, 6, 9, 12,15, 5, 10 の7個である. よって, 15 と互いに素な自然数の個数は、 150 f(15)=15-7=8 その他の 練習 1 約数と倍数 Focus 13 NE-A 実は (2) p, gは異なる素数であるから, pg と互いに素でな い自然数, すなわち, pの倍数またはαの倍数であり、 pg 以下の自然数は, pq+10+1 Dの倍数 1p,2p,.... (g-1) p, pg ⑨個 ⑨の倍数 1・g, 2g, ..., (p-1)q, pq p の1個 pg の倍数 pg より, (q+p-1) 1 0103 よって, pg と互いに素な自然数の個数は, bb. f(pq) = pq-(g+p-1)-DALS)-(6-8-S (8) = pg-p-g+1=(p-1)(g-1) (3) p, 自然数であるから、が以下の自然数はがきが 個ある. この結果は素数であるから,以下の自然数での倍数 カー1(個) 「互いに素である」の 否定 「互いに素でな 「い」を考える. このf(n) をオイラー 関数という. (p.432 Column 参照) (1)を一般的に考える. p=3,g=5としてみ ると見通しがよくなる. pq÷p=q (1) pg÷g=p(個) は全部で, したがって f(p") = pk-pk-1 ES AICI IT TO .80 (85)5√3 ST=N 、電 互いに素である自然数の個数は、補集合の考えを利用せよ SON YASSKOR LUSHAJAJ 例題243のf(n) について次の問いに答えよ.ただし, p q は異なる素数 ( ^^)とする 431 第8章

回答募集中 回答数: 0