学年

教科

質問の種類

数学 高校生

数1です。 一枚目が解説、2枚めが問題なんですが、解説を読んでも⑶と⑷がなぜこんなグラフになるのか分かりません。もう少し詳しく説明してくださる方いましたら、教えてもらえると嬉しいです。 よろしくお願いします🙇

38- -4 プロセス数学Ⅰ y=-x2+2ax-4a+1 を変形するとal y=(x-a)2+α2-4a+1 (−1≦x≦2) 関数y=-x2+2ax-4a+1のグラフは上に凸の 放物線で, 軸は直線x=α, 頂点は点 x=a+1のとき y=a22a (1) [1] a+1<2 [1] 3 5 すなわち すなわちx= で最大値をとる。 2' 2 <1のとき 1 (a, a2-4a+1) である。 また x=1のとき y=-6a, グラフは [図] の実線 部分のようになる。 よって, [3] 2<a+ [3]11 a+1 すなわち a- a+1 Qa x=2のとき [1] a<−1 のとき -1≦x≦2でのグラ フは [図] の実線部分 y=-3 x=α+1で最小値 [1] y1 a22a をとる。 [2] a≦2≦a+1 [2]y a 2 [グラフは [図] の実線 0 x 部分のようになる。 よって, -11 すなわち のようになる。 1≦a≦2 のとき よって, x=α+1で最大値α2-2a をとる。 [1]~[3] から a O x=-1で 157 最大値-6αをとる。 グラフは [図] の実線 部分のようになる。 よって a+1 a 2 3 a. のとき x=αで最大値 α-4a + 3 [2] -1≦a≦2のとき -1≦x≦2でのグラフは [図] の実線部分のよ うになる。 0 3 5 x=2で最小値 -1 をとる。 -1 12/2kaのとき よって, x=αで最大値 α-4a+1をとる。 [3] 2<αのとき [3] y [3] 2 <αのとき -1≦x≦2でのグラフは [図] の実線部分のよ うになる。 よって, x=2で最大値-3をとる。 グラフは [図] の実線 部分のようになる。 よって, (3) m a=2のとき x=a+1で最大値α2-2a (3) (1) から, 関数のグラフは [図] のようになる。 (4) (2) から, 関数のグラフは [図] のようになる。 (4) x=2 2 で最大値 -2 3 x =αで最小値 3) α24a+3 をとる。 0 a+1x [2] y1 Oa 2 -1- x [3] y -1 2 a [1]~[3] から -1- 3 10 a<1のとき 1≦a≦2 のとき x=α+1で最小値α2-2a x=2で最小値10 12/3 2 O 0 a -1 2<a のとき x =αで最小値α2-4a +3 1 (2) 定義域の中央の値は + 2 164 [1]~[3] から a<-1のとき [1] a + 1/2 <2 [1] 31 すなわち x=-1で最大値-6a -1≦a≦2 のとき x=αで最大値α2-4a+1 ak2のとき a+ 1 a+1 2<aのとき x=2で最大値 -3 [参考] 最小値を求める場合は,グラフが上に凸の とき,軸から最も遠いxの値を考える。 グラフは [図] の実線 部分のようになる。 よって, a2 売価を x円値上げすると, 1日の売り上げ 個数は (300-2x) 個になる。 x≧0 かつ 300-2x≧0 であるから 0x150 1日の売り上げ金額をy円とすると 171 1 y=(100+x)300-2x) 右辺を変形すると -1 すなわち, 軸 x=αの位置について以下のように 場合分けをする。 [1] 定義域の中央より左 x = αで最大値 α2-4a+3 をとる。 [2] 定義域の中央 [3] 定義域の中央より右 [2]1+1/2=2 [2]y すなわち (100+x)(300-2x) =-2x2+100x +30000 =-2(x-25)2+31250 よって, yはx=25で 最大値31250 をとる。 したがって, 売価は 125円にすればよい。 31250 30000 163 y=x2-4x+3を変形すると y=(x-2)2-1 (a≦x≦a+1) =2のとき O 3a+1, a 2 関数 y=x2-4x+3のグラフは下に凸の放物線で, グラフは [図] の実線 部分のようになる。 3 025 150 4 軸は直線x=2, 頂点は点(2,-1) である。 また x=αのとき y=a2-4a+3, +よって, x=a, a+1

未解決 回答数: 1
数学 高校生

なぜマーカーのところの確認が必要なのですか??

0 基本例題 16 ベクトルの大きさと最小値 (内積利用) 00000 ベクトルà, について|=√3,161=2,15=√5であるとき (1) 内積 の値を求めよ。立 (2) ベクトル 2a-3 の大きさを求めよ。 頂点とする OAR (3) ベクトルâ+坊の大きさが最小となるように実数の値を定め,そのとき の最小値を求めよ。 [類 西南学院大] ・基本 10 重要 17 基本 32\ =(5) 変形する が現れる。 ★ 大きさの問題は (3) (2) 2a-3を変形して,, の値を代入 。 a + to を変形するとの2次式になるから 2 乗して扱う ① 2次式は基本形 α(t-p)+αに直す CHART はとして扱う =√5から la-61²=598-81 1 章 1章 3 ベクトルの内積 (1) 計 解答 よって (a-b) (a-6)=5 ゆえに la-2a1+1=5 |a|=√3,|6|=2であるから したがって a.b=1 =4|a-12a +91 (2) 12a-36-(2a-36) (2a-36) (一)( 指針 ..... ★の方針。 ベクトルの大きさの式 k+16について, 2乗 3-845+45て内積を作り出 bbb すことは, ベクトルにお ける重要な手法である。 (2a-36)² =4a²-12ab+962 と同じ要領。 =4×(√3)2-12×1+9×22 =36 2a-360であるから |24-36|= 6 (3) la+tb=(a+tb)•(a+tb)=|a|²+2ta b++² 1612² 不 =4t2+2t+3=4t+ (1+1/+17 4 よって,+はt= のとき最小値 をとる。 4 la +t6|≧0 であるから,このとき a +t6 | も最小となる。 √11 したがって, a +66はt=- のとき最小値 を 2 とる。 la+tb 3 11 4 練習 (1) 2つのベクトルd, が,=1, |6|=2, |a+26|=3を満たすとき ともの なす角およびa-26 | の値を求めよ。 ③ 16 [類 神奈川大〕 (2) ベクトル, について, ||=2,|6|=1, a +36|=3とする。 tが実数全体を 動くとき,a+ の最小値はである。 [類 慶応大] p.43 EX 14.15、

未解決 回答数: 1
数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0