数学
高校生

なぜマーカーのところの確認が必要なのですか??

0 基本例題 16 ベクトルの大きさと最小値 (内積利用) 00000 ベクトルà, について|=√3,161=2,15=√5であるとき (1) 内積 の値を求めよ。立 (2) ベクトル 2a-3 の大きさを求めよ。 頂点とする OAR (3) ベクトルâ+坊の大きさが最小となるように実数の値を定め,そのとき の最小値を求めよ。 [類 西南学院大] ・基本 10 重要 17 基本 32\ =(5) 変形する が現れる。 ★ 大きさの問題は (3) (2) 2a-3を変形して,, の値を代入 。 a + to を変形するとの2次式になるから 2 乗して扱う ① 2次式は基本形 α(t-p)+αに直す CHART はとして扱う =√5から la-61²=598-81 1 章 1章 3 ベクトルの内積 (1) 計 解答 よって (a-b) (a-6)=5 ゆえに la-2a1+1=5 |a|=√3,|6|=2であるから したがって a.b=1 =4|a-12a +91 (2) 12a-36-(2a-36) (2a-36) (一)( 指針 ..... ★の方針。 ベクトルの大きさの式 k+16について, 2乗 3-845+45て内積を作り出 bbb すことは, ベクトルにお ける重要な手法である。 (2a-36)² =4a²-12ab+962 と同じ要領。 =4×(√3)2-12×1+9×22 =36 2a-360であるから |24-36|= 6 (3) la+tb=(a+tb)•(a+tb)=|a|²+2ta b++² 1612² 不 =4t2+2t+3=4t+ (1+1/+17 4 よって,+はt= のとき最小値 をとる。 4 la +t6|≧0 であるから,このとき a +t6 | も最小となる。 √11 したがって, a +66はt=- のとき最小値 を 2 とる。 la+tb 3 11 4 練習 (1) 2つのベクトルd, が,=1, |6|=2, |a+26|=3を満たすとき ともの なす角およびa-26 | の値を求めよ。 ③ 16 [類 神奈川大〕 (2) ベクトル, について, ||=2,|6|=1, a +36|=3とする。 tが実数全体を 動くとき,a+ の最小値はである。 [類 慶応大] p.43 EX 14.15、
ベクトル

回答

疑問は解決しましたか?