学年

教科

質問の種類

数学 高校生

0が含むか否かはどういう基準ですか?

318 基本例題188 関数のグラフの概形 (2) ・・・ 対称性に注目 ①①0 関数 y=4cosx+cos 2x (-2≦x≦2π) のグラフの概形をかけ。 基本 187 指針 関数のグラフをかく問題では, 前ページの基本例題187同様 定義域, 増減と極値、凹心 と変曲点, 座標軸との共有点, 漸近線 などを調べる必要があるが,特に, 対称性に注 目すると、増減や凹凸を調べる範囲を絞ることもできる。 f(-x)= f(x) が成り立つ (偶関数) グラフは f(-x)=f(x) が成り立つ (奇関数) 解答 ① y=f(x) とすると, f(-x)=f(x) であるから, グラフはy軸 に関して対称である。 この問題の関数は偶関数であり,y'=0, y" =0の解の数がやや多くなるから、 の範囲で増減凹凸を副べて表にまとめ, 0x2におけるグラフをy軸に関して に折り返したものを利用する。 =–4sinx(cosx+1) =–4(cosx+1)(2cosx−1) 0<x<2πにおいて, y = 0 となるxの値は, sinx = 0 または y' 3" y'=-4sinx-2sin2x=-4sinx-2・2sinxcosx 2倍角の公式。 y=-4cosx-4cos2x=-4{cosx+(2cos2x-1)} 20 : cosx+1=0から x=π y" =0 となるxの値は, cosx+1=0 または2cosx-1=0から(*)の式で, CoSx+120 5 に注意。 sinx, 2cosx-1 の符号に注目。 (E よって, 0≦x≦2におけるyの増減, 凹凸は,次の表のようになる。 (*) - x= お π 3 π " 3 0 3 2 18 +1 π, ↑ π 0 20 3 -3 π *** ++ 軸対称 グラフは原点対称 |53+0 32 π 3″ : y 5 ゆえに, グラフの対称性により, 求めるグラフは右図。 +0 [参考] 上の例題の関数について, y=f(x) とすると よって, f(x) は2πを周期とする周期関数である。 C 5 ◄cos (- (数学ⅡI) 2π 7 (OR) (200 (2)y= 重要 189,190 y=-4sinx-2sin2xを 微分。 - -2π 5 ミル = COS π 3 YA 15 3 f(x+2)=f(x) この周期性に注目し,増減や凹凸を調べる区間を 0≦x≦2に絞っていく考え方でもよい。 ←数学Ⅱ 参照。 70 -3π sink Xの 練習 次の関数のグラフの概形をかけ。 ただし, (2) ではグラフの凹凸は調べなくてよい。 188 (1) y=er-¹ (-1<x<1) ex sin 3x-2 sin 2x+sinx (-75x5) [(1) 横浜国大〕 Op.325 EX161 重要 方程式 指針陰 中 1²2 解答 方程式で は成り立 よって, 8-x²MC 0<x<2. y' = √ y=2 y'=0と また、C 0≤x≤ なる。 よって [ 参考 した 練習 189

回答募集中 回答数: 0
数学 高校生

このようにsinやcosの足し引きされた関数は必ず周期性2πになりますか?ならないら具体例的な関数を教えていただきたいです。

8 基本例題 188 関数のグラフの概形 (2) ・ 対称性に注目 関数 y=4cosx+cos2x (-2≦x≦2π) のグラフの概形をかけ。 基本 187 解答 y=f(x) とすると, f(-x)=f(x) であるから, グラフはy軸 に関して対称である。 指針 関数のグラフをかく問題では, 前ページの基本例題187同様 定義域, 増減と極値,凹凸 と変曲点 座標軸との共有点, 漸近線などを調べる必要があるが,特に, 対称性に注 目すると、増減や凹凸を調べる範囲を絞ることもできる。 f(x)= f(x) が成り立つ (偶関数)⇒グラフはy軸対称 f(-x)=f(x) が成り立つ (奇関数) グラフは原点対称 この問題の関数は偶関数であり, y = 0, y=0 の解の数がやや多くなるから, 0≦x≦2 の範囲で増減・凹凸を調べて表にまとめ, 0≦x≦2におけるグラフをy軸に関して対称 に折り返したものを利用する。 y'=-4sinx-2sin2x=-4sinx-2・2sinxcOS x =–4sinx(cosx+1) y=-4cosx-4cos2x=-4{cosx+(2cos²x-1)} =–4(cosx+1)(2cosx−1) 0<x<2πにおいて, y = 0 となるxの値は, sinx = 0 または COSx+1=0 から x=π y" = 0 となるxの値は, cosx+1=0または2cosx-1=0から 5 π 3" 8 0 x= : π 3 - π 3 よって, 0≦x≦2におけるyの増減,凹凸は,次の表のようになる。 (*) 0 3 2 1 う + π, ↑ R olo ... ++ |5|3| -3 ↑ π + : 1+ 2π ↑ 00000 ◄cos (- = COS 重要 189, 190 2倍角の公式。 (数学ⅡI) y=-4sinx-2sin2xを 微分。 (*)の式で, cosx+1≧0 に注意。 sinx, 2cosx-1 の符号に注目。 0 3 y 5 5 2 ゆえに,グラフの対称性により, 求めるグラフは右図。 [参考] 上の例題の関数について, y=f(x) とすると f(x+2)=f(x) よって, f(x) は2πを周期とする周期関数である。 ←数学ⅡⅠ 参照。 この周期性に注目し,増減や凹凸を調べる区間を 0≦x≦2に絞っていく考え方でもよい。 -27 37 π yA 15 3-2 T 3

回答募集中 回答数: 0
数学 高校生

右下のg( )はどうやって出たのでしょうか、、?

85 sin0, cos0 の2次式の最大·最小 戦問題 B8円 6, c は正の定数とする。0S0<; の範囲で定義された2つの関数 T 2 の=(1-/3a)sin° 0 + 2asin@cos0 +(1+/3a)cos°0, g(0) = bsinc0+bについて f(0)を a, sin20, cos20 を用いて表すと {(0) = |ア」(sin20+Vイ]cos20) +ウ] π エオ|sin(20+ )+| キ]と変形できる。よって,f(0) は カ T のとき最大値 ついて、 0= クケ コa+サ, 0= T のとき最小値口ス シ |aをとる。 セ の a(0) の最小値が0であるとき,cの値の範囲は c2 である。 このとき,さらにf(0)と g(0) の最大値と最小値がそれぞれ一致するならば ]+テコロ 小景を30 タ 3 ツ b= a= チ ナ である。 章 解答 ぶす30… (Sgol+ 1DS 2 (x-9 2log5 (1) f(0)を変形すると」 0<-S 0<-8 りし、 10~ sin20 +2a 2 1-cos20 Key 1 f(0) = (1-/3a) 上 1+ cos20 *f(0) = (sin°0+cos'0) 2 20 -ol 8-2, Key 2 =asin20 +/3 acos20 +1 = a(sin20 +/3 cos20)+1 +a·2sin0cos0 adpg +/3a(cos'0- sin' 0) と変形し,2倍角の公式 ol π +1 3 (×)ol=DS0! +&gol 62ols 2(x-9)2ol + (x8-8)2ol = 2asin(26+ 2sin0cos0 = sin20 0S0s号のとき,520+sxより一9(8-0)apl ー元よりー9 (S-8)20 cos'0- sin°0= cos20 3 3 4log42 13 S sin( 20 + -)S1 (3-3り16 40を0 ー こ る を代入してもよい。 (別 2 3 2e 六 の 1-1 (①) a のとき 最小値1-/3a a>0 より ー/3a+1< 2asin( 20 + -)+1S 2a+1 log -1 よって,f(0) は 間 。 π のとき 最大値 2a+1 12 π π 20+ 3 すなわち 0= 2 TZ 4 -π すなわち 0 = 3 π π 20+ 3 2 「6sine0+b=! (2) g(0) = 0 のとき |6>0 より 020の範囲で sincl == -1 となる最小の0の値6%は、+(81) =8 bsinc0 = ーb 6onc0=1-b Sinc0: sincl = -1 8+ =8+ b 3 3元 -π となり 2 bo ニ c>0 より,cl。 2c boircO+b-0 π 2 よって,0S0< の範囲で g(0)の最小値が0となるとき 2 Sinc@:0 3元 T c>0 であるから, f(0)と g(0)の最大値と最小値がそれぞれ一致するとき 2a+1= 26 かつ 1-/3a=0 -1) e, - より c23 2c 2 9(0) の最大値は 3 6= 3+2/3 -sin +1) = 26 π これを解いて 10 本も ) a= 3) 6 三角関数 82

回答募集中 回答数: 0
数学 高校生

これの(3)でy'=0でないのにx=0で極値を取るってところが解説読んでも詳しくわからないです詳しい方教えてください

基本例題176 関数の極値(1)…基本 CHART)関数の極値 yの符号を調べる 増減表の作成 船>関数の極値 を求めるには,次の手順で増減表 をかいて判断する。 301 OOO0 次の関数の極値を求めよ。 ) y=(x-3)e-* (3) y=|x\Vx+3 ーズ 【類甲南大)(2)y=2cosx-cos 2x (0<x<2x) Ap.298, 299 基本事項(2, [3, 基本 175 1 定義域,微分可能性を確認する。 2 導関数yを求め,方程式ゾ=0 の実数解を求める。 aV=0となるrの値やy'が存在しないxの値の前後でyの符号の変化を調べ。 明らかな場合は省略してよい。 6章 25 増減表を作り,極値を求める。 解 答 0y=2xe-*+(x°--3)(-e-*)=-(x+1)(x-3)e-* y=0とすると x=-1, 3 g 増減表は右のようになる。 (1) 定義域は実数全体であり、 定義域全体で微分可能。 x -1 3 6 0 0 よって =3 で極大値 e 極大 極小 ノ -2e =ー1で極小値 -2e ー3 0 y 6 V3 3 x -3 -2e (2) ゾ=ー2sinx+2sin2x=-2sinx+4sinxcos x =2sinx(2cos.x-1) 0Sx<2xの範囲でゾ=0 を解くと 42倍角の公式 sin2x=2sinx cos.x sinx=0 から x=0, π, 2元, メー 5 -π 3' 3 2cosx-1=0 から π X= Iよって,増減表は次のようになる。 5 π 3 4yの符号の決め方につい ては、次ページ検討を参 π x 0 π 2元 3 照。 0 0 0 極大 3 極大 極小 y 1 3 1 -3 2 2 したがって x= 5 -πで極大値 3' 3 3 ;x=r で極小値 -3 2 (3) (x)=lx\\x+3とする flx)-f(0) -+3 と lim x-0 ) 定義域はx2-3である。 (複号同順) =0 リのとき,y=x/x+3 であるから,x>0では 3(x+2) 2/x+3 lim よ→ー3+0 よって,f(x) はx=0, x=-3で微分可能でない が、x=0 では極小となる。 x ゾ=/x+3 + 2/x+3 ゆえに,x>0では常に ゾ>0 CS CamScannerでスキャン 3 E数の値の変化、最大·最小|

回答募集中 回答数: 0
数学 高校生

☆印のところがわからないのですが、BーCの範囲はどうやってわかったのでしょうか?

(2)与式 =sin Bsin (120°-B)=sinB(sin 120°cos B-cos120°sin B) 14 三角関数/三角形の内角に関する問題一 sin B+sinC の取り得る値の範囲を求めよ。 ) sin BsinC の取り得る値の範囲を求めよ。 (一橋大) 三角形の問題でも,辺が現れず内角だけが問題になっているときは、 A+B+C=180° 「A>O°. B>0°, C>0", A+B+C=180°のとき,~を求めよ」 と同じことである。 囲の場合、A=60° であるから, B+C=120° (一定)である.そこで,「和→積」ゃ「積→和」の 公式を用いて, B+Cが現れるように変形してみよう。 ちろん,等式の条件式を活用する原則である「1文字消去」をして解くこともできる(理別解). 解答 B+C B-C B+C B-C (1) sinB+sinC=sin 2 +sin 令ここでは,「和→積」の公式を導 きながら答案を作った。 2 2 2 B-C B+C COS 2 =2sin 2 B-C B-C B+C=120° により, sinB+sinC=2sin60°cos- =V3 cos 2 2 B+C=120°, B>0°, C>0° のとき,-120°<B-C<120°であるから, B-C B-C 60° <60° 2 1 <cos 2 -60°< 0 2 -60° 2 V3 -<sin B+sin Cい/3 2 以上から, (2) sin BsinC= 2 lcos(B-C)-cos(B+C))= cos(B-C)+ 2cos(B+C)=cos120°=- 2 であり,-120°<B-C<120° により, -六<cos(B-C)<1 3 であるから, 0<sin Bsin C< 4 別解(B+C=120° により, C=120°-BとしてCを消去すると) 令加法定理で展開 リ与式 =sinB+sin(120°-B)=sinB+sin120°cosB-cos120°sin B V3 2 =/3 13 -cos B=V3|sin B· 2 V3 +cosB· 2 1 3 sin B+ 2 2 合合成 =/3 sin (B+30°) 13 -sin Bcos B+ 2 1(1-cos2B) 全2倍角の公式 1 sin? B= 2 V3 sin2B+ 4 ミ 4 田 1 1 sin2B· V3 "cos 2B· 2 1 1 - sin(2B-30°)+ 2 1 4 2 4 のとは,(1), (2)とも0°<B<120° を用いる。

回答募集中 回答数: 0
数学 高校生

静大工学部の数学の大問一つの採点をお願いします!!!(100点満点で) それと写真のオレンジの〰︎部分で第1次導関数を求めるために2x-1で割らないといけないと思うのですが、この時2x-1≠0であると書いて確認をしないといけませんよね?その時の記述がどうしてもわからないので... 続きを読む

(1) 227900-905-19w-903=8utzBスgleodt +S39wde 190-903= faut2XBJalt- 2Btgedt+Rblt -2290-9os こ 8u +2X E9e0-90] -284glandt t6getodt-2Xgorget ニ fw-29dtt S3giaobt よって-1900-91013= 800+ S69cdt -2Jtgididt-0 (2) fw= 423-5X +2人+f00 ここでよ0は定数であるためd0=12X-10人t2=2(3X-U122-1) fwこ0とすると ここでよのは3次関数であり、どの保数はDより大きい ため根込形は右の12のとうにちる このとき極小値は出でとる (まくまより) よってfはFAX-SX+tdw=tio) そ+f10)ニ 、f10:2 よてw=478-52 +2入t2 送にんt0-2のときfん=23t-り(22-),80=00とE す。であり、下の土醤減表よりよいはたしかに極み値 4をとまでもつ。 したダらてよんこ4x-5パ+2X+2 ト~1ま Ht10|- よuつ格大 ソ「極小1 次に一もg0-903:da-2539(tidt +J gar dt gu=-dw.+21519hde -Bg dt tgo1 AV H へ 2 0 g0=-6c0+229 イ 22-リダ0#c0=2(30-0(2X-) 父は04とき g0=2(30-) このとき両辺を種めして 9w=16X-2)dX = 3X-21+C (Cは種6) またのに入こ0を代入して 3 96dt=-fw=-2 J6 34-2ktC)dt=-2 [ポーズヤく大了るニー2 8-4+2C=-2 2C--62C-3 Aよってg0:3と-2X-3 ノ人上より)み一-せ入 90:3パ-22-3 4

回答募集中 回答数: 0