学年

教科

質問の種類

数学 高校生

ツテの解き方がわかりません。解説を読んだのですが、(該当場所は蛍光ペンを引いた部分だと思うのですが…)何を言ってるのかがわかりません。 どなたかすみませんが考え方を教えてください🙇‍♀️ すみませんがよろしくお願いします🙇‍♀️

数学Ⅱ 数学 B 数学 C 第5問 ( 選択問題) (配点 16 ) 第4問~第8問は,いずれか 3問を選択し、解答しなさい。 22 →1or2+3 P 散を V(Z) とすると (2) さいころを回投げて、1または2の目が出る回数を表す確率変数をZとする。 このとき,Zは二項分布 B(n, 1/3)に従うから,Zの平均(期待値)をE(Z), 分 数学Ⅱ 数学 B 数学C 数直線上に動点Pがあり, Pは初め, 原点にあるものとする。 2 2 さいころを投げて、1または2の目が出たとき点Pは正の方向に3だけ移動し、そ れ以外の目が出たとき点Pは負の方向に2だけ移動する。 この試行を回繰り返し セ 184 E(Z)= タ n, V(Z): n たときの点Pの座標を表す確率変数を X とする。 チ 8 8 369 である。 4 363 30 (1) n=2 とする。 2 4 XとZは関係式 X= 2. 2 t Z- e テ nを満たすから 40 ア X=6となる確率は ウ であり, X=1となる確率は である。 E(X)= トナ 15 2 〒9 n エ 9 9 さらに,Xの確率分布を表にまとめると次のようになる。 が成り立つ。 4 4 X 6 また, n = 10 のとき,X2の平均(期待値)をE(X^) とすると A 1 -4 計 6 ア ウ オ 2 確率 1 19 37 ヌネノ 100 E(X) 3 エ カ である。 したがって、 確率変数Xの平均 (期待値) を F(X), 分散をV(X) とすると である。 キク ゴサシ E(X)= V(X) = 104-(-3) 2 ケ ス 9 100 (04 4 9 9 (数学Ⅱ. 数学 B, 数学C第5問は次ページに続く。) 670

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 3枚目の写真が私が解いてたときに書いたものなのですが、範囲のzのところを前の段階で求めた公式を当てはめて解いてたのですが、2枚目の写真の上の方の蛍光ペンのようになる理由がわかりません。どうやったら真ん中がpとなるのですか? 計算をしたのですが、すごい数... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである。 曲がっていない針を1本用意する。 次に、 平坦な机の上に、隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし、 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後。 針を机から取りあげる。 k1600 とする. 回目の試行について、 落ちた針が机に描かれた平行線と共有点をもつ場合は 1, 共有点をも たない場合は0となるような確率変数を X とおく。 また とする. X=Xi+X+... + X1600 X-m d ① X-n X-6 m X- m 回の試行を行う形式をとることで、 今回の実験をすることができた。 (2) 太郎さんと花子さんのクラスでは、32人の全生徒が「試行を50回ずつ, クラス全体で計1600 実験の結果, 落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 このとき 落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度は である。 R= 1000_5 1600 8 今回の実験結果から, (1) でおいたかの値の, 信頼度95%の信頼区間を推定しよう。 (i) 本間では, 正規分布表 (省略) を用いて答えよ。 標準正規分布(0, 1)に従う。 (1)の確率変数Zについて、正規分布表より P(- キク)=0.95 イ)に従う。 ! が成り立つ。 また、実験回数の値1600は十分大きい数なので, 二項分布 Bア )は近似的に 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと,Xは二項分布 B 7 正規分布 N (m, ) と見なすことができる。ただし キク ウ m= また, >0である。 I ① ここで, 確率変数Xが近似的に正規分布 N (m, ♂) に従うので、 確率変数Zを z= オ と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 (1)の結果より,標準正規分布 N(0, 1)に従う確率変数 Zはおよそ95%の確率で不等式 カキク zs カ をみたしている。 このとき、 確率変数 X, Zは関係式 ② キク Z= オ TO ここで, ①よりm= であり、これはを含む式である。 の解答群(同じものを繰り返し選んでもよい。) また、得られた実験結果では X=1000であったので 01600 ① 40 ③ X 1600 5 =R- 40 1600 が成り立つ。 ⑤ 1600p ⑥ 40p ⑦ カ 9 40 1600 さらに、①の エ については,次の仮定を適用して考えるものとする。 [仮定 エ の解答群 H の式中に現れる♪は、今回の実験での発生頻度Rの値 01600p ① 40p ② 40 41600p(1-p) 40p(1-p) p(1-p) 40 ③ 1600 AI-p) 1600 5 R 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度95%信頼区間は

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1
数学 高校生

(2)のヶ〜セまでを求める時に、なぜ5分の2をかけているのですか?ベン図では求められないんですかね...どなたか教えてください🙇‍♀️

10 第3問~第5問は、いずれか2問を選択し、解答しなさい。 第3問(選択問題(配点20) 袋の中に赤玉2個、青玉2個、黒玉2個の合計9個の玉が入っている。この袋 からA,Bの2人が操作 1~操作3の手順により玉を取り出す。 操作:Aが袋から3個の玉を同時に取り出す。 9000 ↓ 2Cx2C 操作2:Aが取り出した玉のうち、赤と青玉は袋に戻す。 操作3Bが袋から3個の玉を同時に取り出す。 例えば、操作でAが赤玉2個、黒玉1個を取り出したとき、操作3でBは 赤玉2個 2個 の合計5個の玉が入った袋から3個を取り出 6C3 す。 一般に、事象の確率をP(X)で表す。 また、二つの事象XYの事象を XOYです。 1:3 操作1でAが取り出したのが0である事をX 1個である事象 Xs, 2個である事象をXとし、操作3でDが取り出した玉の色が2種類で ある事象をY である とする。 (1) P(X)- POR- 5. H 3 オ P(X)- である。 5' カ (2)X)が起こったとき、が起こる条件付き確率は 1755 E75 250 キ である。 ク シ PLAY= であり,P(Y)= である。 コサ スセ 他 △ ソ が起こったとき、事象 X」が起こっている条件付き確率は タ つである。 X 5 3-5 2 3-5 【学第3回は次ページに続く。) S + 2 5

解決済み 回答数: 1
数学 高校生

問題(1)の前提で出されている重さの平均12gと標準偏差4gは、問題で出されている標本平均の平均[ア]と標準偏差[イ]とで何が変わるのですか? ちなみに答えは[ア]が12、[イ]が4/√10=0.4でした。 ↑12gと4gじゃないのはなぜ? 解説に出てきた母平均と母標準偏差... 続きを読む

数学Ⅱ 数学 B 数学 C [第4問~第7問は,いずれか3問を選択し, 解答しなさい。 第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては,必要に応じて23ページの正規分布表を用 いてもよい。 また、 以下の問題では、標本の大きさ 100は十分大きいと考える。 (1) 工場A で製造されたボルト1個の重さの平 均は12.0g) 標準偏差は4.0g) である。 工場 A で製造されたボルトから無作為に大きさ100 の標本を取り出して重さを調べた。 このときボルト1個の重さの標本平均 XA は平均 ア 標準偏差 の正規分布に近似的に従う。 XA ア 12 確率変数 Y を Y = - とすると,Yは平均 ウ 標準偏差 イ 4 エ の標準正規分布に近似的に従う。 26 標本平均 XA が 12.7より大きくなる確率は0. オカである。 ア イ の解答群(同じものを繰り返し選んでもよい。 ① 0.16 ② 0.20 ③ 0.40 ④ 1.0 ⑤ 2.0 ⑥ 4.0 ⑦ 6.0 ⑧ 12.0 ⑨ 16.0 (数学II, 数学 B 数学C第5問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

(2)ですが、何に基づいて∠pab🟰∠qdaになるのが分かりません。どなたか教えてください🙇‍♀️

第3第5は、いずれか2を選択し、 解答しなさい。 第5問 (選択) (20 ABCDにおいて, AB-5, AD-10とし, AB を直径とする円を AD 0 とする。 次の(1)を満たすように2点P.Qをと とする円を る。 (1)Pは、長方形ABCDの外部 0, の上にある。 かつ, N (Qは、長方形ABCDの外 0, の上にある。 かつ, 00分PQ上に直Aはある。 10 参考図 C (2)PB-3である場合について考える。 QDコであり、直接PQと直BDの交点をと すると、 PE-サである。また、QD QE の両方にし、 中心が 分 DE 上にある円の中心をFとすると、 シ である。 さらに、 QD 上に, 3 直線 EG. AD, QF が1点で交わるようにとると. センタ BOGの面積は である。 チッ 55 (1) PQ BD"である場合について考える。 QAオ カであり、口から0. に引いたとO, とすると、 QT キクである。 +49=740 27 1次ページに続く。) 第5問 図形の性質 出題のねらい 意に適した図を描いて、 三平方の定理 相似 方 べきの定理 三角形の角の二等分線。チェバの定理な どの図形の性質を適用し, 線分の長さを求められるか。 解説 (2) であり. QP=6+4 である。 △QED にチ DF EA FE AQ 6+4 QG 6 直角三角形ABD で, BD=√5²+10²=5/5 ・・・・・・ア, イ 直角三角形 PAB において, PA=√52-3=4 円において、 半円の弧に対する円周角は90°である から. また. ∠APB= ∠DQA=90° ......ウエ (1) PQ//BDより, ・10- <BDA = ∠DAQ (錯角) であり. <BAD= ∠DQA (=90) であるから、 △ABDAQDA よって AD BD QADA AD2 102 QA= BD 5/5 ∠APB= ∠DQA (=90°) ∠PAB=90-∠QAD=∠QDA であるから APABAQDA よって, PA PB AB QD QA DA 4 3 5 QDQA 10 が成り立ち, QA=6.QD=8 (PBA=<QDA?) ケ, コ PB <QDより. 点Eは線分BDのBの方への延 長上にある。 ∠EPB= ∠EQD (=90より.. PB // QD GD 3 である。 したがって QG=6 == であるから ABQ アドバイ 方べきの 図形の 用いるか を「知って 用すれば イメージ 設問 図と一 (i) AA ······サ C ......オカ PQ/BD. <BPQ=∠DQP=90° より 四角形 PBDQ は長方形である。 PQ=BD=5/5 円Oに関して方べきの定理より. QT2-QA-QP =4/5.5/5=100 であるから. QT=10 であるから. QEQD PE PB よって 6+4+PE 8 PE 3 3(10+PE)=8PE PE=6 点Fを中心に 2直線 QD QEの両方に接する 円が描けるから QF は ADQEの内角/DQE の二 等分線である。 よって, .....キク より、 DF_QD FE QE DF 8 1 FE 6+4+6 2 PB//QG, ∠GQP=90° より. ABQG=1/2QGQP ......シ, ス

解決済み 回答数: 1
数学 高校生

1枚目の写真の不等号がわかりません。 なぜウオは≦、≧でしたに=があるのですか?個人的に問題文の範囲が≦とか下に=があるからかなと思ったのですが、2枚目の写真、これはフォーカスゴールドのやつなのですが、これも範囲は≦とかで下に=があるので、なぜ、1枚目の方の問題は≦、≧にな... 続きを読む

3 2 数学Ⅰ・数学A 2015年度 本試験 数学Ⅰ・数学A 3 (注)この科目には,選択問題があります。(2ページ参照) y=-x2+2x+2 第1 1問 (必答問題) (配点 20 ) 問題 選択方法 第1問 必 答 第2問 必 答 2 4 2次関数 y=-x+2x+2 ① のグラフの頂点の座標は ア 3である。また -(x-1)2+3 y=f(x) =-(x²-2x)+2 ={(スーパー13+2 (x-1)2+1+2 第3問 必 答 -6 第4問 いずれか2問を選択し、 はxの2次関数で,そのグラフは、①のグラフをx軸方向にかソ軸方向にだ 平行移動したものであるとする。 y-9=-{(x-P)-132+3,y=(x-P-12+3+& 第 5問 解答しなさい。 (1)下 オ には,次の①~④のうちから当てはまるものを一つ 第6問 ずつ選べ。 ただし、 同じものを繰り返し選んでもよい。 y=(x-1)+3 (y-8)=(x-P)-132×3 x=2のとき y=-12-1743=+2 x=4のとき y=-(4-1)^+3=-6 y=(x-P-12+3+軸x=Pel.(Ptl.3+) 2≦x≦4 Maxf(2)→x=2が 12EXε4 Minf(2) → X=2p11 Minとるところ 2 4 Maxとるところ 2+4 Pt1≦2 均衡 =3 2 P§ (-- (7)(+) 35P+1 P+1≧3 X-P+1 414 © > ① < 2 ≥ ③ W ④ キ 2 x 4 におけるf (x) の最大値が f (2) になるようなの値の範囲は ウミ I であり、最小値がf (2) になるような♪の値の範囲は 2 カス P である。 r-n+1 P≧2-(オリ(カ) (数学Ⅰ・数学A第1問は次ページに続く。)

解決済み 回答数: 1