学年

教科

質問の種類

数学 高校生

至急教えて頂きたいです。 考え方から何から何までよく分かりません。お願いします🙇‍♀️

第2回 第1問 必答問題)(配点 30) [1] 0を原点とする座標平面上で,直線 と 2 が外接するとき, その接点をT とおく。 OTシ y=(tan20)x を l とする。 ただし, 00 y=(tan20)x π ∠BOT= ス -- 0 であり,分 BT の長さを tanを用いて表すと, B. セ -tan e BT= である。 である。 l と x軸に接する円のうち, 中心が第1象限に ある円を C, C の中心をAとする。 l とy軸に 接する円のうち, 中心が第1象限にある円をC2, ソ +tan 0 1 +tan0 = t とおくと, 線分ABの長さはtを用いて C1 タ AB = t+ チ t Y C2 の中心をBとする。 tana と表される。母が0<<Tの範囲を動くとき,線分AB の長さの最小値は Aは直線 x=1 上にあるとする。 C1 の半径を0 を用いて表すと ア であ テ ト であり,このとき,tan=ナー る。 ア に当てはまるものを,次の①~⑤のうちから一つ選べ。 である。 sin0 ① cose ②2 tane (数学II・数学B 第1問は次ページに続く。) 1 1 (3 (4 sinė cos 1 tan また,直線 OB がx軸の正の向きとなす角をα (0<a</ とすると, αは π 0を用いて α = 0+ と表される。 イ 3 ウ (1)0= とすると, C, の半径は である。 また, 直線 OBの方程 6 エ 式は y= オ +. カ xとなるので, C と C2 の半径が等しいとき, キ ケ Bの座標は B コ である。 ク (数学Ⅱ・数学B 第1問は次ページに続く。) -32- Js (lan) x J.√3% -33-

解決済み 回答数: 1
数学 高校生

このQのx座標はどうやってだしているんですか? 問題文のケ・コ の部分です!

解説 OC=OB=4, ∠COB = 20より, Cの x 座標は 4cos20=4(cos'0-sin20)=4( 4(1-a²) 1+a2 1+a2 a² 1+a 第1問(数学Ⅱ 図形と方程式, 三角関数) II 1 3 4 5 24 【難易度...★★】 Cのy座標は YA `C (p. a) l:y=ax 4sin208sin Acos0=8・ 8a =1+α2 よって, C の座標は a √1+a² √1+a² O Q 18 A(2, 0) B(4,0) (1Xi) C の座標を (p, g) とおくと, l⊥BCより 9-0 p+ag-4=0 4(1-a²) 8a (⑧⑦) 1+a² 1+a² (2) lは線分BCの垂直二等分線であり, Aは分 の中点であるから,Qは OBCの重心である。 よって, Qのx座標は 4(1-a2)] 1/4+4+te 8 3(1+a a. =-1 P-4 (①) 3 1+a2 また、親分BCの中点(+4, が上にあるので Qのy座標は p+4 1 8a =a 2 2 31+α23(1+α2) 8a ap-g+4a=0 (6) ②よりg=ap+4a, ① に代入して p+a(ap+4a)-4=0 (1+α2)p=4(102) よって, Q の座標は Q(3(1+a²ð), 3(1+a²³)) 8a (3, 0) (3)(2)より 第 (1) (ii) 4(1-a²) p= 1+α² ②より √4(1-a²) +4}= g=a 1+a² 8a 1+α² POB=0 (0<< 2 ) とおくと,tan0 はの傾 きを表すので tan 0=a (0) 8 x= 3(1+a2) 8a y= 3(1+α2) とおくと, >0よりx>0,y>0であり,③④より y n a= x 8 これを③,すなわち x(1+α²)に代入して このとき 1 cos20= 1 1+tan20 1+a² COS0 >0より cos= 3 √1+a2 x 8 8 x2+y2=1203 3x 16 よって, 点Qの軌跡は a sin0=tan0cos= √1+a 中心 ( 143 ) 半径 1/3の円 のy>0の部分である。

解決済み 回答数: 1
数学 高校生

【三角関数】 (オ)についてです。 答えが③になる理由がわからないです。 問題文からわかるのですか? それとも基本事項ですか?

数学B・数学C (注)この科目には、選択問題があります。(3ページ参照。) での三角比の合成 第1問(必善問題)(配点 15) 紅学・学 数学Ⅱ・数学B 数学 C ウ の解答群 太郎さんは三角関数のある問題の解法の解説を読んで,自分で応用を考えてみる ことにした。 百 3π 2 ①π ② ③ 2π 2 太郎さんは方程式 sin 6. +- =cosxx の解について考えてみることにした。 I の解答群 (1)太郎さんはたとえば="を代入すると水の左辺はア ,右辺は イ sinasin β ① sin a cos β となり一致しないことを確かめた。 また,他に幾つかの値を代入してみたが を満たすxの値はみつからなかった。 sin (bit ④ 2sin asin / ⑤ 2sin a cos B cos asin ẞ ⑥ 2 cosasin β ③ cosacos β ⑦2 cos a cos B 3_ で イ の解答群 6 O 1 /3 ① √2 ② ③ 2 ④ 0 2 (5) ⑥ √2 2 √3 ⑦ ⑧ -1 2 (2)太郎さんは先に読んだ解法にならって次のように考えた。 一般に cos x=sin( ウ -x) (3)太郎さんは別の解法についても考えてみることにした。 太郎さんは一般に inA=sin B のとき, A=オであることに着目し, A=6x+7 B= ウーと考えることでも方程式を解けることに気がついた。 B+zu オの解答群 ⑩ B+nπ (n は整数) ① B+2n (n は整数) ②B+mπ, π-B+nπ (m, n は整数) ③ B+2mπ, π-B+2nπ (m, n は整数) sin ( Sin であるから, 方程式の解は方程式 sin(6æ+/)=sin(ウ-x)…の解 である。 一般に sinxcospt cosin カ (4) 方程式の正の最小の解はx= π,正の小さい方から2番目の解は sin(α+β)-sin(α-β)= H {rindcosp+ cosasige) キク O ケ である。よって, α+3=6x+a-B= ウ 3' -x から α, β を求め, x= πである。 また, 方程式 Xの 0≦x<2である解はシス 個ある。 コサ エ =0に着目することで方程式 すなわち方程式を解くことができる。 (数学Ⅱ・数学B 数学C第1問は次ページに続く。) sin (6x+1)= = 105 x. sx= sin(x) ze 2 cosa sing x-13=6x+3 x- 6 α = 2 cos (2x+27) d-= -x. ( E * + 2 -5- -4- 2d=5x+ x + 6 12 x -x

解決済み 回答数: 1
数学 高校生

ソタチなんですが、=がつくときとつかないときがわからなくなってしまいます。どのように考えたらいいでしょうか?

[2]を実数の定数と実数xに関する条件.g.rを次のように定める。 p: 3-2x<+2a g:2x+1</+3 :|x|<1 また、条件qrの否定をそれぞれで表すものとする。 (2) 「わかつq」 がであるための必要条件となるようなαの値の範囲は タ チ である。 (1) a=1とする。 命題 ス ⇒ は真である。 ス の解答群 (万かつ g ① (g) ③また また、x=1777が、命題「(pかつg)⇒r」の反例となるような整数nは 個ある。 9-6x1x+6 1-7-3 x>1 C 6x+32 +9 (数学Ⅰ. 数学A第1問は次ページに続く。) ソ の解答群 6 ŷ s 数学1. 数学第1問は次ページに続く。) Signo [2] 条件3-2x<20 を満たすェのの範囲は - 条件:2x+1<+30 を満たすの 条件 x <1 を満たすxの値の範囲は-1 <x<1 (1)=1のとき は<(3-1) c>のと -c<x< また Fixs-1, 15x 条件(かつ(またはg)かつ(または2を満たすxの値の 範囲はそれぞれ (または)x1 かつ (または この中で、条件を満たすxの値の範囲に含まれるものは すなわち、 「(pかつ」は真である。 (かつ) 条件は、 ("0) 条件(かつ)を満たすxの値の範囲は<x<log であるから。条件 かつg)を満たし条件を満たさないxの値の範囲は1x<1/ th. A. が成り 9-6xx-a - 1x < 20-9 x >9-29 x=117 が命題「(pかつq)」の反例となるとき 15 <号 よって 175 n<102-20.4 ゆえに、17. 18, 19, 20 (2) 「かつg」 が、であるための必要条件と なるには、命題 なればよい。 命題 (p. かつg)」 が真と、 が真となるために かつq)」 (3-2) は、右の数直線より (3-24-1 かつ12 (34-1) これを解くと2023 かつ すなわち <第5回> -82- <第5回 -83- <-4- は、条 を満た

解決済み 回答数: 1
数学 高校生

⑵なぜ21/5をとったのか ⑶なぜ21/4なのか教えてくださいお願いします🙇

△ABCにおいて, BC = 7, sin∠ABC=- 5 C= 1/3 とする。このとき,△ABCの形 状について考えよう。 オカ オカ (1) ACの長さの最小値は であり, AC= のとき, △ABCは キ (2) 正弦定理により 35 〔2〕 (1) AC の長さが最小となるのは,Cから ABに下ろした垂線が AC となるときである。 このとき AC=BCsin∠ABC =7.. **21 55 であり, ABC は ∠BAC=90° の直角三角 形ただ一通りである。(①) BCの長さを固定し、図をか 考えるとわかりやすい。 A AC 8 sin∠ABC よって AC=321 ク 4. し ケコ ケコ (2)△ABCの外接円の半径が5のとき,AC- である。 AC= サ サ のとき, △ABCは シ (3) AC=7 のとき, △ABCはただ一通りの鈍角三角形である。 -<AC<77 <AC のとき, △ABC は ス 2 ケコ サ ク シ スの解答群(同じものを繰り返し選んでもよい ⑩ただ一通りの鋭角三角形である ①ただ一通りの直角三角形である ②ただ一通りの鈍角三角形である ③二通りあり、それらは鋭角三角形と直角三角形である ④二通りあり、 それらは直角三角形と鈍角三角形である ⑤二通りあり、 それらは鈍角三角形と鋭角三角形である ⑥二通りあり、 それらはどちらも鋭角三角形である ⑦ 二通りあり,それらはどちらも直角三角形である ⑧二通りあり、 それらはどちらも鈍角三角形である (数学Ⅰ 数学A第1問は28ページに続く。) AC sin∠ABC より sin BAC-1/3とな 右の図のように, AC=224 となる点は2つ 存在する。 これらを Ai, A2 とし,さらにAC = 2/3 のと きのAをA' とする。 △A'BCは ∠BA'C=90° の直角三角形である から ABCはBA,Cが鈍角の鈍角三角形 である。 21 21 もう一度正弦定理を用いる BC sin ∠BAC また,A2C2+BC2= 441 の直径であるから 16 1+49=1225=(25) より A2Bは△ABCの外接円 ∠ACB=90° ゆえに, AC-2 のとき, △ABCは二通りあり、それらは直角三角形と鈍 角三角形である。 (4) (3) AC=7 のとき, ABCはただ一通りの鈍角三角形である。 2 <AC<7 のとき, ABCは∠BACまたは∠ACBが鈍角の鈍角三角 4 形である。 また, AC>7 のとき, ABC は∠ABC また は∠ACB が鈍角の鈍角三角形である。 21 よって, <AC<77 <AC のとき, ABC は二通りあり、 それらはどちらも鈍角三角形で ある。 ( 8 ) 問題文の読みとり 〔2〕 △ABCにおいて, BC=7, sin∠ABC= 状について考えよう。 BC=1/23 とする。このとき, ABCの形 0° <∠BAC <180° である 点Aは2通りある。 2-4 BC:AC=7:44:3. sin∠ABC= =1/3 から. △ABC が直角三角形かど 調べてもよい。 <CA=CB, ∠ACB が鈍角 辺三角形。 〔2〕はこの条件の える。 BC=7 とわかっ ら, sin∠ABC る直線BA。 上に るととらえる。 ■基準設定を <第2回> -26-

解決済み 回答数: 1
数学 高校生

オカキのところなんですが、なぜAC垂直BCではだめなんですか?

〔2〕 △ABCにおいて, BC = 7, sin∠ABC= 状について考えよう。 オカ オカ (1) AC の長さの最小値は であり, AC= のとき, △ABCは =223 とする。このとき,△ABCの形 ACQUA 〔2〕 (1) ACの長さが最小となるのは, Cから ABに下ろした垂線が AC となるときである。 このとき AC=BCsin∠ABC BCの長さを固定し, 図を 考えるとわかりやすい。 ¥5 キ =7.3*21 45 A であり, △ABCは ∠BAC=90° の直角三角 ク 形ただ一通りである。(①) (2) 正弦定理により 35 2.- AC 8 sin∠ABC B- L ケコ ケコ 35 よって (2) ABCの外接円の半径が のとき,AC= である。 AC= サイ AC=-4 21 サ 右の図のように, AC= 2 となる点は2つ のとき, △ABCは シ (3) AC=7 のとき, △ABCはただ一通りの鈍角三角形である。 ケコ <AC <7, 7 <AC のとき, △ABCは ス △A'BCは ∠BA'C=90° の直角三角形である から, ABC は BAC が鈍角の鈍角三角形 である。 存在する。 これらを A,A2とし,さらにAC= 2/3 のと きのAをA' とする。 もう一度正弦定理を用い BC AC sin BAC sin∠AF より in BAC=13 0° <<BAC<180° で 点Aは2通りある。 4 サ また,A2C2+BC2=441 16 ク シ ス の解答群 (同じものを繰り返し選んでもよい。) の直径であるから +49=- ∠ACB=90° より A2BはA2BCの外接円 BC: AC=72=4 16 sin∠ABC123から ⑩ただ一通りの鋭角三角形である ゆえに,AC=2のとき, △ABCは二通りあり、それらは直角三角形と鈍 角三角形である。 (4) △ABCが直角三角形 ① ただ一通りの直角三角形である (2) ただ一通りの鈍角三角形である (3) AC=7 のとき, ABCはただ一通りの鈍角三角形である。 調べてもよい。 <CA=CB, ∠ACB 辺三角形。 21 <AC<7 のとき, △ABCは ∠BAC または ∠ACB が鈍角の鈍角三角 ③二通りあり、 それらは鋭角三角形と直角三角形である ④二通りあり、 それらは直角三角形と鈍角三角形である ⑤二通りあり、それらは鈍角三角形と鋭角三角形である ⑥二通りあり、 それらはどちらも鋭角三角形である ⑦二通りあり、 それらはどちらも直角三角形である ⑧二通りあり,それらはどちらも鈍角三角形である (数学Ⅰ 数学A第1問は28ページに続く。) 4 形である。 また, AC>7 のとき, ABCは∠ABCまた は ∠ACB が鈍角の鈍角三角形である。 よって、 <AC <7,7<AC のとき, ABC は二通りあり、それらはどちらも鈍角三角形で ある。 (8) A 問題文の読みとり 〔2〕 △ABCにおいて, BC 7, sin∠ABC= =123 とする。このとき, ABCの形 状について考えよう。 〔2〕はこの える。 BC=7 とわ ら, sin∠A る直線 BA るととらえ ■基準

解決済み 回答数: 1
数学 高校生

ス、セなんですが、なぜ答えではこのような言い換えをしているのですか? 私はこの命題を満たすものを選べばいいと思ったので、⓪はすぐに消してしまいました。

〔2〕 正の実数aに関する次の三つの条件 Q, rを考える。 α は無理数である 1 g:a+ は無理数である。 9 a r:2+1/2 は無理数である なお,必要ならば,2,3が無理数であることを用いてもよい。 (1) 命題 「pg」 の反例であるものは D シ である。 命題 「pr」 の反例でないものは ス である。 シ の解答群 ス と の解答の順序は問わない。) a=1 ① a=√2 ?a= √3 ③ a=1+√2 ④ a=2+√2 ⑤ a=2+√3 (2)はgであるための ソ。 〔2〕 条件. Q.の否定をそれぞれ, Q. です。 (1)各選択肢のα.a+1,123の値は、次の表の通りである。 a a' 0 1 √2 (有理数)(無理数) √√3 1+√2 (無理数) 3√2 43 2 (無理数)(無理数) 2012の計算は、 3) とよい。 2+√2 2+√3 (無理数) a+1 2 a (有理数) 4 (有理数) 2 10 3 6 (無理数) 15+62 (有理数) (有理数)(有理数) 命題 「q」の反例は,かつ,すなわち (有理数) 2 (無理数) 14 (有理数) 3 2√2 6+√2 (無理数)(無理数) (無理数) a 「αが無理数 かつ a+ - が有理数」を満たすものである。 これを満たすのは⑤ 命題 「pr」 の反例でないものは、 またはr. すなわち 「αが有理数または+1/3が無理数」を満たすものである。 これを満たすのは^⑩⑩ (または 0, 0) (2) 命題 「rg」は真である。 (証明) 対偶」 が真であることを示す。 正の実数aに対して,a+1/2=x =xが有理数であるとすると、 a'+1=(a+1)-2=x2-2 も有理数である。 (1+√2)+ (1+√ 1+√2 =(2√2)^2=6 よって、 対偶 「!」 が真であるから,もとの命題 「r」も真である。 命題 「qr」は偽である。 (証明終) (2+√√2)+(2+ (2+√2+1 2+√ 19+6√22 15+6√2 (2+√3)+( (2+√3+2+ -42-2=14 √2. v23√2 2 2 は無理数であるが、 ソ の解答群 ⑩ 必要条件であるが, 十分条件ではない ① 十分条件であるが, 必要条件ではない (2) 必要十分条件である 必要条件でも十分条件でもない (数学Ⅰ 数学A第1問は10ページに続く。) L D (√2)+(v/zy=2+1/2=1/27は有理数であるから,a=√2 は反例である。 ゆえに は q であるための十分条件であるが, 必要条件ではない。(①) (参考)表中の1+√2 2+√2, 2+√3 などが無理数であることは,√2 √3 が無理数であることを用いて証明することができる。 例えば、 1+√2 が無理数であることは、次のように証明できる。 (証明) 1+√2 が有理数であると仮定すると, 有理数xを用いて 1+√2=x と表される。 このとき √2=x-1 右辺のx-1は有理数であるが, 左辺の2は無理数であるから, 矛盾 する。 したがって, 1+√2 は無理数である。 (証明終)

解決済み 回答数: 1