学年

教科

質問の種類

数学 高校生

なぜ(1)の問題のxは全ての値を取るのですか? 平方完成した式からx=2 最大値2じゃないんですか?

64 第3章 2次関数 基礎問 37 最大・最小 (III) ★ (1) 実数ぶりについて,エーy=1のとき,ポー2gの最大値と, そのときのりの値を求めよ. (2) 実数,yについて、2x+y=8 のとき,+g'-2.x の最大 値、最小値を次の手順で求めよ. (i)x2+y^2-2xをxで表せ. 39 (iii) (i 注 (ii) よ 直こ KD (ii) のとりうる値の範囲を求めよ. (i) x2+y^2xの最大値、最小値を求めよ. ((3) y=x^+4x3+52 +2x +3 について,次の問いに答えよ. (i) x2+2x=t とおくとき,yをtで表せ. (i) −2≦x≦1のとき, tのとりうる値の範囲を求めよ. yo 直 こと (3) (i) y= (ii) t (iii) −2≦x≦1 のとき, yの最大値、最小値を求めよ. (iii) (i 精講 見かけは1変数の2次関数でなくても,文字を消去したり,おきか えたりすることで1変数の2次関数になることがあります.このと き, 大切なことは,文字の消去やおきかえをすると y= -1 t=3 残った文字に範囲がつくことがある t=- ことです。これは2次関数だけでなく, 今後登場するあらゆる関数でいえるこ とですから,ここで習慣づけておきましょう. 解答 ポイン (1) x-y=1より, y=x-1 :.x2-2y2=x2-2(x-1)2=-x2+4x-2 =-(x-2)2+2 平方完成は28 はすべての値をとるので、最大値2 このとき, x=2, y=1 (2) (1) y2=8-22 より x2+y²-2x=x2+8-2.x²-2x=-x²-2x+8 2≧0 だから, 24-m²) ≧0 .. x²-4≤0 .. (x+2)(x-2)≤0 .. -2≤x≤2 演習問題 37 (1 (2 (3 ■2次不等式は 44

解決済み 回答数: 1
数学 高校生

AK(→)とAC(→)の表記が次の行から無くなっているのがなぜなのか分かりません。 また、点Hが線分CK上にあるとなぜ=1になるのですか?

C154 (240) 第3章 平面上のベクトル 例題 C1.29 垂心の位置ベクトル **** に下ろした垂線の足をK, 頂点Bから辺 ACに下ろした垂線の足をL. △ABCにおいて, AB=8, BC=7, CA=5 とする. 頂点Cから辺AB BLとCK の交点をHとする. AB=b, AC=cとして、次の問いに答え (1) AK, AL を,cを用いて表せ (2) AHCを用いて表せ. 考え方 (1) AK=kとおき, CK⊥AB より CK・AB=0 を利用して,kの値を求める (2) B, H, Lは一直線上にあるので, AH= (1-s) AB + SAL とおける.さらに、 解答 Hは線分 CK上の点でもあることを利用する. (1) △ABCにおいて, 余弦定理より, 82+52 72 1 cos A=- 2.8.5 2 Think 例題 AA 置ベク (1) (2) [考え方 X-MA-TA-IM K 解答 > b=|b||c|cos A=8.5=202 MA-A AK-kb <, CK=kb-cAM 01 B CK⊥AB より CK AB=(kb−c) b=k|b|²-b•c=64k—20=0 5 よって, k=- , AK=56 16 AL=mc とおくと, _16 BL-mc-b BL⊥AC より BL AC=(mc-b) c=m/c/2-b-c=25m−20=0 4 よって, m= m=1 より AL=4 50 (-1) + x)-DA-M (2)B,H, Lは一直線上にあるから, BH:HL=s: (1-s)| とおくと, AH=(1-s)AB+sAL= (1-s)+450 -16(1-5)AKSAC 5SC 6=16 16 11/8(1-5)+/s=1 より 4 =S ここで,点Hは線分 CK 上にあるから、トイ 4 5~ 5 i = 1/6 AK を代入 A K 11 1= 11-> 12 12AAL L H B 1-s/C 「練習 01.00 これを点 be △ABL→△ACK 注目する三角形 を変える。 注〉 (2)については, AH=sAB+tAC (s, t は実数) とおき, CHAB=0, BH AC=0 から s, tの連立方程式を作り,これを解いて直接求めてもよい △ABCにおいて, AB = 5, AC=4, ∠A=60°とする

解決済み 回答数: 1
数学 高校生

447の1)です。線を引いたところの式はどのように出すのでしょうか?4-(23-4・5)・1からいきなりぶっ飛んでて良く分かりません。

参照。 互除法を用いる。 自然数についても,最大 次の2つの整数の最大公約数を,互除法を用いて求めよ。 589, 403 689,481 (2)697,119 (4)551,209 1 こなるような 50 以下 446 (1) 2辺の長さが nの式と自然数の最大 (2) 2辺の長さが 826 649 5'2 ることができる最も大きい正方形の1辺の長さを求めよ。 である長方形にすき間なく敷き詰 11 1である長方形にすき間なく敷き詰め 19' めることができる, 最も大きい正方形の1辺の長さを求めよ。 求めよ。 y=12 どんな整数cについ が存在する。 *(1) 50x+23y=1 447 次の等式を満たす整数x, yの組を1つ求めよ。 (2) 90x+37y=2 算を利用して求める *(3) 62x-23y=5 (4) 103x-38y=10 ーる。 4483235123009 の最大公約数を求めよ。 とすると ✓ 449 nは自然数とする。 次のことを証明せよ。 第3章 数学と人間の活動 割る 余り ↓ (1)nn+1は互いに素である。 *(2) n2+n+1とn+1は互いに素である。 ¥450 (1) 7n+17 と 8n +19 が互いに素であるような100 以下の自然 数nは全部で何個あるか。 (2)23n+121と10n+52の最大公約数が7になるような 100 以 下の自然数 n をすべて求めよ。 ② 割る 余り ↓ る 余り 451は自然数とする。 n2+3n+8とn+2の最大公約数として考 えられる数をすべて求めよ。 ② ヒント 449 2つの数の最大公約数が1であることを示す。 =90-7+37-(-17) は 59 10 すなわち 90.7+37・(-17)=1 447 (1)5023に互除法の計算を行うと,次の ようになる。 両辺に2を掛けて 90.14+37(-34)=2 よって、 求める整数x、yの組の1つは x=14, y=-34 50=23.2+4 移項すると 4=50-23・2 23=4.5+3 4=3.1+1 よって すなわち 移項すると 3=23-45 移項すると 1=4-3・1 1=4-3・1=4-(23-4.5)・1 =4.6+23.(−1) =(50-23.2)・6+23・(-1) =50・6+23・(-13) 50.6+23(-13)=1 別解 a=90,b=37 とおく。 90 37の互除法の計算から 16=90-37.2より 16-b.2=a-26 537-16.2より 5 b-(a-2b).2 = -2a+5b 116-53 より 1=(a-26) (−2a+5b) =7a-17b

解決済み 回答数: 1