学年

教科

質問の種類

数学 高校生

組み合わせの問題です! 階乗でやる方法なかったですか? 解説お願いします

304 基本 例題 30 整数解の組の個数(重複組合せの利用) 00000 (1) x+y+z=7 を満たす負でない整数解の組 (x, y, z) は何個あるか。 (2) x+y+z=10 を満たす正の整数解の組 (x, y, z)は何個あるか CHART & THINKING 整数解の組の個数 ○と仕切りの活用 p.294 基本事項 基本-20 (1) 直接数え上げるのは大変である。 問題を読みかえて, x, y, zの異なる3個の文字から 重複を許して7個の文字を取り出すと考えよう。 すなわち 7個の○と2個の仕切りの 順列を考え、仕切りで分けられた3つの部分の○の個数を,左から順に x, y, zとする。 例えば 〇〇〇一〇〇一〇〇には (x, y, z)=(3, 2, 2) 一〇〇〇〇〇〇〇には (x, y, z)=(0, 2, 5) がそれぞれ対応する。 (2)x,y,zが正の整数であることに注意。 (1) の考え方では0となる場合も含むから x-1=X, y-1=Y, z-1=Z とおき, 0であってもよい X≧0, 0, Z≧0 の整数解の場合((1) と同じ)に帰着させ る。これは, 10 個の○のうち, まず1個ずつを x, y, zに割り振ってから, 残った7個の ○と2個の仕切りを並べることと同じである。 また,別解のように,10個の○と2個の仕切りを使う方法でも考えてみよう。 解答 (1) 求める整数解の組の個数は, 7個の○と2個のを1列 に並べる順列の総数と同じであるから ( 別解求める整数解の組の 個数は,3種類の文字 zから重複を許して7個 る組合せの総数に等しい ら3H7=3+7-1C7=9C7 =9C2=36 (1) X = 0, Y ≧ 0,Z≧0 C=C2=36(個) 合韻高 (2)x-1=X, y-1=Y, z-1=Z とおくと このとき,x+y+z=10 から (X+1)+(Y+1)+(Z+1)=10x=x+1, y=Y+l, 重要 例題 3 次の条件を満 (1) 0<a<b CHART & 大小関係が条 (1)条件を満た ら4個の数字 (2) (1) とは違 (2,2,2,2 それらの数 重複組合せ 別解として A=a, B= (a, b, c, (A, B, C. するから, 解答 (1)1,2, 小さい順 まる。 よって、 (2) 0, 1, 2 い順に よって、 よって A= 条件 0 7! よって X+Y+Z=7, X≧0, Y≧0,Z≧0 ...... A z=Z+1 を代入。 別解 求める正の整数解の組の個数は, A を満たす0以上の整数 解 X, Y, Zの組の個数に等しいから, (1) の結果より 36個 OC (別解 10個の○を並べる。 である。 よって、

解決済み 回答数: 1
数学 高校生

丸のところがよく分かりません 2番目のイコール以降の変化です

14 法線と曲率/曲がり具合 ry平面上の曲線 C: y=eについて,次の問いに答えよ. (1)点(a, ea) における Cの接線の方程式を求めよ. また, 点 (a, ea) におけるCの法線の 方程式を求めよ. (2) a1 とする. 点 (1, e)におけるCの法線と,点(α, ea) におけるCの法線との交点 のx座標をαの式で表せ。 (3) (2)で求めたαの式をん(α) とするとき, limh (α) を求めよ. a-1 (京都産大・理系) 法線の方程式 傾きm, m' (m=0, m'≠0) 2直線が直交する条件は,mm'=-1である. 曲線y=f(x)上の点 (t, f (t)) における法線は,傾き1(t,f(t))を通る直線だから f'(t) 1 (x-t)+f(t) (ただしf' (t) ≠0のとき. f'(t)=0のときは, 法線はx=t) y=- f'(t) 分母を払った形 「f'(t) {y-f(t)}=-(x-t)A」 は, f (t) =0のときも通用する. なお,曲率については,右下の研究を見よ. 解答 (1) y=eのとき, y' = e であるから, A (a, ea) における接線は, .. y=e(x-a)+e y=ex-(a-1)e 1 法線は,y=-- (x-a)+ea 1 .. ea lay=- -x+e+. a ea ⑪1 (2) ①でα=1として, y=-- 1 1 x+e+ e e ea ③②を連立させ」を消去して(-1/2)x=(a+1)-(+) ea e ea 両辺を倍して, (eq-1-1)x=ea+1+ea-1-24-a (e e² .. x= ea+1+ea-1-e2a-a ea-1-1 (3) f(a)=ea+1+ea-1-eza-a,g (a) =e-1-1とおくと, ea f'(a)=ea+1+ea=1_2e2a-1,g (a)=e-1, f (1) = 0, g(1) = 0 であるから f(a)-f(1) a-1 ② ■研究 との交点R は ②上 あるから, α→1としたとき, ③ 5.(20+1)に近づく この点を R1 とする. 曲線 C上の点P (1, e)の近 に2点 Q Q' をとって3点P, Qを通る円を考える. この Q→P, Q'→P としたときの 状態の円を, 「点P における c 曲率円」 という. 上で求めた R はこの曲率 中心である . 曲線上の点Pの付近を円 似したものが曲率円なので, YC: y=ex 円の半径が小さいほど曲が 合がきつい. h(a)= f(a) g(a) g(a)-g (1) a-1 f'(1) -e² e² ③ a-1 g'(1) 1 微分係数の定義を活用、 h(a) a O X 14 演習題(解答は p.62) 平面において,曲線 C: y=logx上に2点A(a, loga) とB(a+h, log (a+h)) (h=0)をとる。点AにおけるCの法線と点BにおけるCの法線の交点をD(α,B) と

解決済み 回答数: 1
数学 高校生

参考書には対数の計算はまとめる か 分解すると書いてあるのですが、写真のように対数の性質を使って無理やり同じ項を作って0を作るやり方でもこれから先困らないでしょうか💦 参考書のまとめる、分解するやり方は理解してないです

基本例題 176 対数の値と計算 (1) 次の対数の値を求めよ。 (7) log381 (2)次の式を簡単にせよ。 4 (ア) 10gz 5 + 210g210 00000 (イ) 10g10- 1 1000 (ウ) log243) (1) (イ) logs√12+10g3- 3 3 -logs/3 2 2 指針 (1)真数を(底) の形に変形して, logaaの活用。 (2)公式を用いて,次のどちらかの方針により計算する。 [1] 1つの対数にまとめる [2] 10g 2, log3 などに分解する 下の解答では,1つの対数にまとめる解法を示した。 CHART 対数の計算 まとめる か 分解する (1) (ア) 10g81=log33'=4 /p.282 基本事項 2 真数 (0) loga M L(>0, #1) | (ア) log81=rとおくと 1 (イ) 10g10 =log1010-=-3 1000 (ウ) 10g/√243=10g( 4 (2) (7) log2- 2 +210g2 10=log2/3(10) } =log28=log223 (1) log: √12+log: log: √3 3'=81 ゆえに3= よって r=4 (イ) (与式)=-10g 010°=- でもよい。 (ウ) 243=3= 1-5 (2)別解 (分解する解法 (ア) (与式)=10g24-logz! 2 =2+1=3 (イ) (与式) (log22+log25 =3 3 3 +2・ 2 2 0 3 1 =log12. 2 (3)2 =logs2v3. . 1/13) =log33 -log, 3 =1 =(2 log₁2+log:3) +(log33-log32) 次の(ア)~(ウ)の対数の値を求めよ。 また, (エ)のをうめよ。 (7) log264 () log0.01 10/10 (イ)10g/8 (エ)10gvs = -4

解決済み 回答数: 1
数学 高校生

サがわかりません。 3枚目に蛍光ペンを引いているのですが、なぜq になるのかがわかりません。私は学校で解いた時CD両方y座標が-9だからという理由で-9にしました… 問題が長くてすみませんがどなたかよろしくお願いします🙇‍♀️

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2,7), C(-2,-9), D(-4,-9), E (-7,21) がある。 (i) 2次関数y=f(x) のグラフが, 3点 A, B, Cを通る。 f(x) を求めよ。 (ii) 2次関数y=g(x)のグラフが, 3点C,D,Eを通る。 g(x) を求めよ。 太郎: f(x) は 2次関数だとわかっているから,f(x)=ax2+bx+c とおいて計算すれば, a,b,c の値を求めることができそうだね。 花子: f(x)は2次関数だから、 ア という条件が必要だよ。 太郎: そうだったね。 3点を通る条件が順に a+b+c= イ ウ a+ I |b+c=7 オ a- カ b+c=-9 だから、この連立方程式を解くと, α = キク 6ケ C= と求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎 : たしかに, 2点C, Dのy座標が等しいということから g(x)= サ とすることができるね。 花子: g(x) = | サ とした方が, (i)と同じようにするよりも計算が楽にできそうだね。 (1)~コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2a=0 ③a> o ④ a<0 サ の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +q ② d(x+3)2-9 ③ d(x+3) +q 1

解決済み 回答数: 1
数学 高校生

数Ⅰデータの活用です。画像にある1/30ですが、共分散に代入するときに消えるのはなぜですか?

例題 49 30人の生徒に数学と英語の試験を行い, 数学の得点xと英語の得点」 のデータを取ったところ, x と yの共分散は217, 相関係数は0.78 で あった。得点調整のため, z=2x+10, w=3y-20 として新たな2つ の変量 z, w を作るとき, zとwの共分散, 相関係数を求めよ。 指針 定義にしたがって考える。 共分散得点調整前後の偏差の関係を求める。 相関係数 得点調整前後の標準偏差の関係を求める。 [解答 変量xのデータを X1,X2, ......, X30 とし, データの平均値をxとする。 y,z, wのデータについても同様に定め, 平均値をそれぞれy,z, w とすると z=2x+10, w=3y-20 よって, zの偏差は Zk-z=(2x+10)-(2x+10)=2(xk-x) wの偏差は wk-w=(3y-20)-(3y-20)=3yk-y) よって,xとyの共分散を Sxy, zとwの共分散をSzwとすると2 1 Szw {(z1-2)(w₁-w)+(22-2) (w₂-w) ++(230-2)(w30-w)} = 30 1 30 {(xx).3(y-y)+2(x2-x) (y-y)+.+2(330-xx) ・3(30-y)} /1 が =6• ((x₁-x)(y₁-y)+(x2-x) (y2-y) ++(x30-x) (y30-y)} 30 =6・Sxv=6・217=1302 答 また, x, y, z, w の標準偏差をそれぞれ Sx, Sy, Sz, Sw とすると Sz=|2|Sx=2Sx, Sw=|3|sy=3sy Szw 6Sxy Sxy よって, zとw の相関係数は = = = 0.78 答 SzSw 2sx3sy SxSy 参考 a,b,c,d を定数とし、 2つの変量 x, yからz=ax+b, w=cy+d によって新しい 変量 z, wが得られたとする。 このとき, zとwの相関係数 rzw と, xとyの相関係数 rxy について、次が成り立つ。 ac0 のとき rzw=rxy, ac< 0 のとき zw

解決済み 回答数: 1
数学 高校生

高1数学 場合の数です。 この問題の[2]の説明に関してです。 奇数(3通り)が2つ、4以外の偶数(2通り)にも関わらず、(3^2×2)×3 をしているのはなぜですか? 3×3×2だと思ったのですが…

6 基本 例題9 (全体)(・・・でない)の考えの利用 |大、中、小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 指針「目の積が4の倍数」を考える正攻法でいくと、意外と面倒。 そこで、 (目の積が4の倍数)=(全体) (目の積が4の倍数でない) 基本 として考えると早い。 ここで,目の積が4の倍数にならないのは,次の場合である。 [1] 目の積が奇数→3つの目がすべて奇数 [2] 目の積が偶数で, 4の倍数でない→ 偶数の目は2または6の1つだけで、他の 早道も考える わざ CHART 場合の数 (Aである) = (全体)(Aでない)の技活用 目の出る場合の数の総数は 答 [1] 目の積が奇数の場合 目の積が4の倍数にならない場合には,次の場合がある。 よい。) (+1) サントリー 6×6×6=216 (通り) 積の法則 (63 と書いても 3つの目がすべて奇数のときで 3×3×3=27 (通り) (うしの積は奇数。 1つでも偶数があれば は偶数になる。 [2] 目の積が偶数で,4の倍数でない場合 3つのうち、2つの目が奇数で, 残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54(通り) [1] [2] から, 目の積が4の倍数にならない場合の数は 27+5481(通り) ( ( 和の法則 よって、目の積が4の倍数になる場合の数は 216-81=135(通り)掛け(全体)(・・・でない)

解決済み 回答数: 1