数学
高校生
解決済み

丸のところがよく分かりません
2番目のイコール以降の変化です

14 法線と曲率/曲がり具合 ry平面上の曲線 C: y=eについて,次の問いに答えよ. (1)点(a, ea) における Cの接線の方程式を求めよ. また, 点 (a, ea) におけるCの法線の 方程式を求めよ. (2) a1 とする. 点 (1, e)におけるCの法線と,点(α, ea) におけるCの法線との交点 のx座標をαの式で表せ。 (3) (2)で求めたαの式をん(α) とするとき, limh (α) を求めよ. a-1 (京都産大・理系) 法線の方程式 傾きm, m' (m=0, m'≠0) 2直線が直交する条件は,mm'=-1である. 曲線y=f(x)上の点 (t, f (t)) における法線は,傾き1(t,f(t))を通る直線だから f'(t) 1 (x-t)+f(t) (ただしf' (t) ≠0のとき. f'(t)=0のときは, 法線はx=t) y=- f'(t) 分母を払った形 「f'(t) {y-f(t)}=-(x-t)A」 は, f (t) =0のときも通用する. なお,曲率については,右下の研究を見よ. 解答 (1) y=eのとき, y' = e であるから, A (a, ea) における接線は, .. y=e(x-a)+e y=ex-(a-1)e 1 法線は,y=-- (x-a)+ea 1 .. ea lay=- -x+e+. a ea ⑪1 (2) ①でα=1として, y=-- 1 1 x+e+ e e ea ③②を連立させ」を消去して(-1/2)x=(a+1)-(+) ea e ea 両辺を倍して, (eq-1-1)x=ea+1+ea-1-24-a (e e² .. x= ea+1+ea-1-e2a-a ea-1-1 (3) f(a)=ea+1+ea-1-eza-a,g (a) =e-1-1とおくと, ea f'(a)=ea+1+ea=1_2e2a-1,g (a)=e-1, f (1) = 0, g(1) = 0 であるから f(a)-f(1) a-1 ② ■研究 との交点R は ②上 あるから, α→1としたとき, ③ 5.(20+1)に近づく この点を R1 とする. 曲線 C上の点P (1, e)の近 に2点 Q Q' をとって3点P, Qを通る円を考える. この Q→P, Q'→P としたときの 状態の円を, 「点P における c 曲率円」 という. 上で求めた R はこの曲率 中心である . 曲線上の点Pの付近を円 似したものが曲率円なので, YC: y=ex 円の半径が小さいほど曲が 合がきつい. h(a)= f(a) g(a) g(a)-g (1) a-1 f'(1) -e² e² ③ a-1 g'(1) 1 微分係数の定義を活用、 h(a) a O X 14 演習題(解答は p.62) 平面において,曲線 C: y=logx上に2点A(a, loga) とB(a+h, log (a+h)) (h=0)をとる。点AにおけるCの法線と点BにおけるCの法線の交点をD(α,B) と

回答

✨ ベストアンサー ✨

図にしました

やみー

あとで見させていただきます
丁寧にありがとうございます!

やみー

見るのが遅くってしまい申し訳ありません
すごく分かりやすかったです!
ありがとうございます!m(_ _)m

この回答にコメントする
疑問は解決しましたか?