学年

教科

質問の種類

数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1
数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1
数学 高校生

こういう問題で両辺を🟰でつなげて Xで割って判別式を用いるのはだめなんですか?

332 重要 例題 208 2曲線が接する条件 解答 00000 2曲線 y=x-2x+1とy=x2+2ax+1 が接するとき, 定数αの値を求めよ。 また、その接点における共通の接線の方程式を求めよ。 指針 「2曲線が接する」 とは, 2曲線が1点を共有し,かつ, 共有点 における接線が一致することである (この共有点を2曲線の接 点という)。 2曲線y=f(x),y=g(x)がx=pの点で接するための条件は 接点を共有する f(b)=g(b) 〔接線の傾きが一致する f(b)=g' (b) f(x)=x-2x+1,g(x)=x2+2ax+1 とすると f'(x)=3x2-2, g'(x) = 2x+2a 2曲線がx=pの点で接するための条件は 基本20420 △判別式は 使える EXE ② 130 曲線 つし の方 ③ 131 座 の 2次方程式 132 E Af(p)=g(p) よって ②から 2a=3p2-2p-2 f(p)=g(p), f'(p)=g'(p) p3-2p+1=p2+2ap+1 ① 32-2=2p+2a 2. (3) 条件 f'(p)=g'(p) 接点を共有する 接線の傾きがー これを①に代入して p3-2p+1=p²+(3p²-2p-2)p+1 致する条件 αを消去する。 ゆえに p²(2p-1)=0 よって p=0, 2 9 ③から =0のときa=-1,=123のとき a=- 8 133 曲線y=f(x) 上の点 x=pにおける接線の方程式は y-(p³-2p+1)=(3p²-2)(x-p) グラフは,次のようにな 0=(S-) る。 すなわち y=(3p2-2)x-2p³+1. ゆえに, 求める接線の方程式 は a=-1(p=0)のとき a=-1のとき +a=1のとき 134 yy=f(x) ya `y=f(x)/ (1- y=-2x+1 a=- 9 11/12 (11/12) のとき y=-2x+4 5 3 10/10 ty=g(x) 羽 (1) 2曲 0 1 3-4- x 0 18 1 1 12 y=gl 117 HIN 共通な

解決済み 回答数: 3