学年

教科

質問の種類

数学 高校生

積分法の体積の応用が解けなさすぎるんですけどなにかコツはありますか?(>_<) それから、研究例題83なんですけど、 (OB²π-OA²π)×1 だと何がダメなのでしょうか、 それと解答のRのx座標が1-tになる理由も知りたいです 盛りだくさんでごめんなさい💦

51 体積 Ⅱ 解 B 514. xz 平面上の放物線z=1-xをAとする。 次にyz平 面上の放物線z=1-2y2 をBとする。 B を, その頂点 が曲線A上を動くように, 空間内で平行移動させる。 そのときBが描く曲面をSとする。 S と xy平面とで囲 まれる立体の部分をTとする。 (1) 平面 x=t (-1≦t≦1) によるTの断面積をS(t) とするとき, S(t) を tの式で表せ。 (2) 立体の体積V を求めよ。 *515.xyz空間において, 4点O(0, 0, 0), A(1, 0, 1), 研究例題 83 分法 B(0, 1,0), C(0, 0, 1) がある。 線分AB, AC, OB を軸のまわりに1回転して囲まれる立体をTとする。立 立体の体積を求めよ。 xyz空間において, 3点A(0, 1,0),B(1, 1,0), C(0, 1, 1) がある。 ABCを軸のまわりに1回転 するとき, △ABCが通過してできる立体をTとする。 (1) 平面 z=t (0 ≦t≦1) によるTの断面積をS(t) と するとき, S(t) をtの式で表せ。 (2) 立体Tの体積V を求めよ。 (1) 右の図のように点P, Q, R をとると, P(0, 0, t), Q(0, 1, t), R (1-t, 1, t), QR=CQ=1-t より S(t) =π PR-PQ2 = = (2) V-S(t)dt = x(t-1)³ dt V= π 3 =ñ(PR²—PQ²)=7QR² =(1-t)2 =(t-1)2 x 1 B. B P 0 B NOT 0 ~S(t) △PQR は直角三角形。 *516.xyz空間において, yz 平面上の 0≦z≦cosy, sys で表される領域をDとする。 点 (1, 0, 0) を 通り,y軸に平行な直線をl とし, 直線ℓを軸として 領域Dを1回転させるとき, Dが通過してできる立体 →例題83 をTとする。 立体Tの体積Vを求めよ。 研究例題 84 に1回転してできる立体の体積Vを求めよ。 曲線 y=x2-2x と 直線 y=xとで囲まれた部分を、次の回転軸のまわり (1) y 軸 であるから, lim 1/4x0 4x (1) 区間 [x, x+4x] の部分をy軸のまわりに1回転してできる立体の体積 AV は , 4x が十分に小さいとき AV=2πx{x-(x2-2x)}・4x AV_dv dx (2) 直線 y=x -=2πx(3x-x2) また, y=x2-2x と y=x との交点の x座標は , よって, 0, 3 よって, B y=x/ -2πx V= v=S2x (3x-x²)dx= x (x²-2x) y=x2-2x 14x 円柱の側面を開いたもの 3x³. v=Sz(3x − x²) ². 2 dx = 72 | √2 ●扇形の面積をSとすると, 半径r, 弧の長さlのとき, \x+4x =2xx²-x²-3x (2) 区間 [x,x+4x] の部分を直線y=x のまわりに1回転してできる立体の 体積 ⊿V は, ⊿x が十分に小さいとき, 1 AV=π{x-(x2-2x)}2.- ・4x 弧の長さ2mPH であるから, √√2 AVdV 4x-0 4x limi ==7 (3x-x²)² + √2 dx yA PQ x-(x²-2x) 円錐の側面を開いたもの y=x 4xHX 20 517. 研究例題 84 (1)の方法を用いて,次の問題の体積V を求めよ。 (1) 108ページの例題 81 *(2) 109ページの510 111 π 20 l S=r².. = πr². 2лr √3 x xx+4x 2π PH 2A-PQ 例題84 (1) 518. 曲線 y=x² と直線y=xとで囲まれた部分を, 直線 y=xのまわりに1回 転してできる立体の体積Vを、次の2通りの方法で求めよ。 発展* (1) 研究例題 84 (2)の方法 (2) 直線y=xに垂直な断面積を積分する方法 第6章 例題 84 (2)

回答募集中 回答数: 0
数学 高校生

青チャートI Aです この式変形が、左辺の言っていることはわかるのですが、それをどうしたら右辺になったのかわかりません

62 重要 例題 170 曲面上の最短距離 右の図の直円錐で,Hは円の中心線分ABは直径, 本面 OH は円に垂直で, OA = a, sin0= 1/23 とする。 点Pが母線 OB上にあり, PB= とするとき, a 3 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 241038 解答 AB=2r とすると, △OAH で, AH = r, ∠OHA=90°, 1/3であるから=1 sin0= a 側面を直線OA で切り開いた展開図 は、図のような, 中心 0, 半径 OA=αの扇形である。 中心角をxとすると, 図の弧 ABA' の長さについて 2ла• 基本 149 指針▷ 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。そこで,曲面を広 げる,つまり 展開図で考える。 側面の展開図は扇形となる。 なお,平面上の2点間を結ぶ最短の経路は、2点を結ぶ線分である。 x 360° = =2πr であるから A a 3 217 a• 2 9 B PSDOCS A' 14814 HAMAS USA.9 X a VMIJA 00000 HO13-JOHA SUSHED THE „HƆA, TƆA ---3---- JOHD AMI EV H r x=360°=360° 1/3=120° a 3 a 3 ここで, 求める最短経路の長さは、図の線分 APの長さである 2点S, T を結ぶ最短の経路 から、△OAP において, 余弦定理により, は、2点を結ぶ線分 ST AP2=OA2+OP²-20A・OP cos 60° =x²+1 + (-1/a)²-2a.. AP>0であるから、求める最短経路の長さは7a S.S S O YB LIGE A(A) AVであ MA 弧ABA'の長さは、底面の 円の円周に等しい。 T

回答募集中 回答数: 0
数学 高校生

数学Ⅱの青チャート基本例題242の問題なのですが、下の大きな青括弧で囲っているすぐ後の1/2がどこから出てきたのかわかりません😭 わかる方いたら解説お願いします😢

370 8/5 (1)0 (2)×12の出所が分からん… 00000 2 を中心とする円Cが異なる2点で接するとき 基本例題242 放物線と円が囲む面積 放物線:y=x" と点 R ) (1) 2つの接点の座標を求めよ。 (2) 2つの接点を両端とする円 C の短い方の弧とLとで囲まれる図形の面積S を求めよ。 指針 (1) 円と放物線が接する条件を p. 156 重要例題 102 では 接点 重解で考えたが、 ここでは微分法を利用して,次のように考えてみよう。 LとCが点P で接する RP (2) 円が関係してくる図形の面積を求める問題では, 扇形の面積を利用することを考え るとよい。 半径が 中心角0 (ラジアン) の扇形の面積は 2122²0 点と点P(t, t2) を通る直線の傾きは 4t²-5 4t 解答 (1)y=x^から y'=2x LとCの接点Pのx座標をt (t=0) とし, この点での共通 の接線をl とすると, lの傾きは 2t t=± 練習 ③242 を共有する 点Pで接線l 2 -x²dx 5 4 t-0 t²_. RPl から 2t・ √3 よって ゆえに、接点の座標は 2 (2) 右図のように, 接点A,Bと点Cを定めると, RC:AC=1:√3 から ∠ORA= Lと直線AB で囲まれた部分の面積を1とすると S=S+RBA(扇形RBA) 3 =-1 ゆえに2= 4 = 201² (4-²) + [f-1²-²0 } }r}: 1².sin 2 √3 --S² g(x + 4 X²-¹²-²² + + - √³)(x-√3 √√√3 TC x+ dx 2 4 3 [類 西南学院大 ] 4t²-5 4t 5 RA=1/3.RA-2.(1/4-2)=1 でっから出てきた? π --(-1){ 4³ -(-4³)² + 43³ - 33/3-7 √3 √3 π 3√3 π = B (3.3). (-33) 2 2 B B y 基本237 √3 O 4 R 12P 15 2 5 YAL(y=r) 4 R t 10 CA 21 0 √3 2 (22/0 2 R ĐẢO P 放物線y 分される 針の はS この 条件 CHAR 解答 放物線y= -x(x-2 ゆえに 放物線C:y=212x上に点P(1.212) をとる。x軸上に中心をもち点Pで数 物線に接する円とx軸との交点のうち原点に近い方をBとするとき、円弧BP (短い方)と放物線Cおよびx軸で囲まれた部分の面識 よって 放物線と それぞれ S= = S= ①求める ゆえに って と L₂

未解決 回答数: 1