学年

教科

質問の種類

数学 高校生

なぜ4acの符号がプラスではなくマイナスなのでしょうか?

解の公式 平方完成という, 2次方程式を解く万能の手法を手に入れたので,どんな2 次方程式でも(「実数解がない」ということも含めて)解くことができるように なりました.ところが,同じような作業を繰り返しているうちに,「もっとこ の作業を効率よくできないか」と考えるようになるのは自然でしょう. 2次方程式は一般的に 第1章 ax2+bx+c=0 (a≠0) という形をしていますから、先ほどの作業をこの文字のまま行えば,解を a, b, cという3つの係数だけを用いて表すことができるはずです. 少し煩雑な 作業ですが,いったんその式を作ってしまえば,今後同じ事を繰り返さずに一 気に答えを出すことができるのですから、やってみる価値は大いにありそうで す. 根気のいる式変形ですが,実際に鉛筆を持って一行ずつ式を書きながら追 いかけてみてください. まずは平方完成です. ax2+ a (x²+1)+c b として x+c=0 x2の係数αでくくる 2 b 62 + lah Ad² +c=0 平方完成の基本の変形 2 2 x+ +c=0 式は複雑ですが,以前の項で説明した 「平方完成の手続き」を踏んでいるだ けです. 次に,これを「最も基本的な2次方程式」 の型にもっていきます。 b a(2+)-6²-4ac0 4a=0j COM

未解決 回答数: 2
数学 高校生

ウの意味がわかりません なにを言ってるんですか?

382 重要 例題 31 同じものを含む円順列 00000 白玉4個、黒玉が3個, 赤玉が1個あるとする。 これらを1列に並べる方法に 通り円形に並べる方法は通りある。更に、これらの玉にひもを通 し, 輪を作る方法は 通りある。 指針(円形に並べるときは,1つのものを固定の考え方が有効。 【近畿大 基本 18. ここでは、1個しかない赤玉を固定すると、 残りは同じものを含む順列の問題になる (ウ) 「輪を作る」 とあるから, 直ちに じゅず順列=円順列+2と計算してしまうと、こ 本事項 重複組合せ 異なる 解説 組合せ C 同じものを 重複を許し ようになる あるが、ここでは,同じものを含むからうまくいかない。 そこで,次の2パターンに分 の問題ではミスになる。 すべて異なるものなら「じゅず順列 円順列÷2」で解決す ける。 [A] 左右対称形の円順列は、裏返 すと自分自身になるから、 1個と 数える。 [B] 左右非対称形の円順列は、裏 返すと同じになるものが2通りず つあるから÷2 [A] [B] 裏返すと同じ (円順列全体) (対称形) よって (対称形) + 2 8! (ア) =280(通り) 4!3! 解答 同じものを含む順列 柿 の果物を 物があっ (考え方と の中から れぞれ 考える。 買物か りの左 りんご (イ)赤玉を固定して考えると, 白玉4個、黒玉3個の順列 1つのものを固定する の総数に等しいから 7! 4!3! -=35(通り) 47C4=7C3 (ウ)(イ)の35通りのうち, 裏返して自分自身と一致するも左右対称形の円環 のは、次の [1]~[3]の3通り。 [1] [2] [3] C 図のように、赤玉を一 上に固定して考えると よい。 また、左右対称形のとき 赤玉と向かい合う位置に あるものは黒玉であるこ ともポイント。 この の果 これ ■ 重 2 残りの32通りの円順列1つ1つに対して、裏返すと一 致するものが他に必ず1つずつあるから,輪を作る方法 35-3 は全部で 3+ 残りの32通りはお は、 対称形の円順列。 等 =3+16=19 (通り) (全体) ( か (対称形)+ で (非対称 = (対称形) + そ 2 練習 同じ大きさの赤玉が2個, 青玉が2個, 白玉が2個、黒玉が1個ある。これらの ④ 31 に糸を通して輪を作る。 (1) 輪は何通りあるか。 (2)赤玉が隣り合う輪は何通りあるか。 2

未解決 回答数: 1